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ABSTRACT

With the rapid growth of the use of synthetic chemicals and the exceedance of the
planetary boundary on novel entities, new tools and multi-disciplinary strategies are
needed to understand the major drivers of human exposure to synthetic chemicals of
concern.

In this thesis, | summarize and link 20 studies that together provide a multi-faceted
approach to improving our understanding of human exposure to chemical pollutants. The
articles cover the development and improvement of sampling techniques for human
exposure, the integration of multiple data sources to improve our understanding of
exposure, and the integration of elements of policy, human behaviour and environmental
impacts to provide a framework for human exposure evaluation. Results from original
research highlight the development and optimization of sampling tools necessary to
collect data in indoor and urban environments, and ensure comparability across studies.
Integration of exposure estimation techniques allows us to contextualize and prioritize the
broad set of chemical exposure data that is available from indoor and outdoor monitoring.
The included studies also incorporate evaluation of environmental policy and regulation;
this is critical in evaluating the implementation and effectiveness of policy actions to ensure
a science-backed strategy for chemical management, with the ultimate goal of reducing
our exposures to hazardous chemicals.
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1 INTRODUCTION

Human exposure to chemicals has been known to impact health since the 1700s — chimney
sweep's cancer (later identified as scrotal cancer) was linked to exposure to chimney soot,
in a paradigm-shifting insight by British doctor Percivall Pott (Dronsfield, 2006). While it
was not until the 1920s that the implicated chemical was identified as benzo[a]pyrene, a
polycyclic aromatic hydrocarbon (PAH) (Dronsfield, 2006), the identification of
environmental exposure to chemicals as a trigger for health impacts was one of the first
steps in exposure science, linking environmental causes with health outcomes. Over the
past centuries, many links between chemicals and health impacts have been established,
e.g., ingestion exposure to lead identified in Australian children in 1892 (Needleman, 2009),
Minamata disease caused the discharge and biomagnification of mercury in the Japanese
area of Minamata Bay in the 1950s (Budnik and Casteleyn, 2019), and the field of human
exposure to chemicals continues to grow in complexity.

Synthetic chemicals, a basis for so much development in modern society, pose one of the
biggest challenges to exposure science today. Around 350 000 chemicals are being
marketed globally (Fenner and Scheringer, 2021) and the diversity and quantity of synthetic
chemicals have been increasing at rates surpassing the drivers of global environmental
change (Bernhardt et al., 2017). Conventional strategies are challenged by this rapid
increase in complexity: the constantly increasing number of chemicals in commerce and
under development requires advanced tools and strategies for a comprehensive overview
of human exposure to chemicals. The planetary boundary of Novel Entities (Steffen et al,,
2015) is estimated to have been passed as the increasing rate of production and releases
of novel entities exceed society’s ability to conduct safety-related assessments and
monitoring (Persson et al., 2022).

This thesis presents a collection of 20 peer-reviewed papers published between 2014 and
2023 related to human exposure to chemicals. The papers are grouped according to a
focus on the development and improvement of sampling techniques for human exposure
(Articles 17-20), integration of multiple data sources to improve our understanding of
exposure (Articles 9-16), and synthesis, integrating elements of policy, human behaviour
and environmental impacts to provide a framework for human exposure evaluation that
can support the challenge of increasing chemical complexity (Articles 1-8).

Currently, | have published 88 papers, including 78 articles and 10 conference proceedings.
My contribution to the 20 articles selected for this habilitation thesis is summarized in the
tables in the attached commentary document, giving my percentage contribution to
different elements of the work.



2 A FRAMEWORK FOR UNDERSTANDING CHEMICAL
EXPOSURE

Chemical exposure is typically categorized according to exposure route — for most
chemicals this is distributed between inhalation, ingestion (including both diet and non-
dietary ingestion), and dermal uptake. However, a broader framework is necessary to
understand the relevance of specific exposure pathways for individual substances or
groups of chemicals, what factors lead to within-population differences in exposures, and
more broadly, identify actions which can be taken to reduce exposure to harmful chemicals.

Human chemical exposure sits at the junction of several key factors. To provide a
framework for guiding research on chemical exposures, we consider a framework
presenting the “lifecycle” of a chemical exposure, from product use involving direct
exposures (also called “near-field” exposures in some exposure models), and indirect
exposures from the wider environment (also called “far-field” exposures). A conceptual
overview of this framework is presented in Figure 1

Each element of this exposure framework can be influenced by three major types of
determinants of exposure:

e Chemical use, influenced by policy and regulations permitting/restricting chemicals,
and industrial developments in the synthesis and production of new materials and
products;

e Human behaviour, and shifts towards certain lifestyle patterns, professions, dietary
patterns and consumer choices;

e Environment, combining the influence of near and far-field exposures on humans.

While there are many overlaps and interlinkages between these factors, this thesis uses
these three concepts as themes to highlight key scientific understanding in each area and
show my contribution to the study of human exposure to synthetic chemicals, from the
development of sampling techniques through to data synthesis.
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Figure 1 A conceptual representation of key factors driving human exposure to chemicals

2.1 CHEMICAL POLICY AS A DRIVER OF HUMAN
EXPOSURE TO0 CHEMICALS

At the fundamental level, for human exposure to a synthetic chemical substance to occur,
there must be sufficient use of the chemical in some application that could lead either to
its direct exposure to humans, or to its release into the environment and subsequent
exposure. In practice, both these aspects often occur simultaneously.

Therefore, a framework for understanding human exposure to synthetic chemicals must
address the element of chemical use, through consideration of policy and regulatory
aspects that lead to the use or restriction of a chemical, regulatory changes altering
chemical use patterns over time, and broad societal level trends impacting exposures.

A clear potential policy impact on chemical exposures is when a restriction of a chemical is
introduced; restrictions to reduce risks of hazardous chemicals are introduced with the aim
that the use of the restricted substance, and consequently exposure, should decrease over
time. We see clear examples of this in environmental monitoring of persistent organic
pollutants (POPs), which have been restricted through the Stockholm Convention on POPs
(UNEP, 2017), entered into force in 2004 and now with 186 parties. For example, air
concentrations of POP chemicals such as hexachlorocyclohexane, polychlorinated
biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl
ethers (PBDEs) showed continuous declining trends at Arctic monitoring stations from
1992-2018, reflecting global decreases in chemical stocks and emissions (Wong et al.,
2021), and similar responses to restrictions and reductions of POP use have been seen in


https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ddt
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pbde
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pbde

other air (Kalina et al., 2018; Venier and Hites, 2010), sediments (Bogdal et al., 2008), and
biota monitoring (Crimmins et al., 2012; Rigét et al., 2019).

While the time trends generated from routine monitoring are indicative of overall
reductions in environmental emissions, and provide a suggestion of human exposure
trends, more direct evaluation of the effectiveness of restrictions on reducing human
exposures can be achieved through human biomonitoring (Magulova and Priceputu, 2016).
Many POPs are persistent, lipophilic compounds which are best monitored through lipid-
heavy matrices, e.g., blood serum and breast milk (Vorkamp et al., 2021). Human milk has
been selected as a core medium of the Global Monitoring Plan of the Stockholm
Convention, and has routinely been monitored through a strategic partnership between
the World Health Organization (WHO) and United Nations Environment Programme
(UNEP) to track patterns and trends of human exposure to chemicals (Magulova and
Priceputu, 2016).

A meta-analysis of human biomonitoring data reporting levels of PBDEs was one of the
first analyses to generate alarm regarding PBDE exposures: the analysis found a doubling-
time of levels of PBDEs in human tissues of five years, translating to rapidly increasing levels
in human populations (Hites, 2004). PBDEs are flame retardants - chemicals added to
consumer products and building materials to reduce their flammability. They have been
widely used in consumer products and building materials on a global basis (Abbasi et al.,
2015), and the concerns raised about PBDEs' environmental persistence and toxicity
(Darnerud, 2003), and specifically neurodevelopmental impacts related to children’s
exposure (Hudson-Hanley et al., 2018), have led to a transition over the past 20 years away
from PBDE flame retardants to alternative synthetic chemicals. Our recent meta-analysis of
PBDEs identified clear evidence of a breakpoint in increasing time trends of PBDEs in
human tissues, evidence of a positive impact of regulations on reducing human
exposure to chemicals (Figure 2, van der Schyff et al., 2023a, Appendix 1). However, this
decreasing time trend does not translate universally to all restricted chemicals; interfering
factors can moderate the impact of restrictions on human exposures. In the case of PBDEs,
we see evidence that differing chemical half-lives in the body delay the impact of
regulations (notably seen in the lack of decrease in PBDE 153, which has a longer half-life
in the human body), but additionally, we capture the lag-time between restriction of a
chemical and the removal of the items containing that chemical from use. Most restrictions
on a chemical eliminate the new production and sale of a chemical, but, for practical
reasons, typically exempt existing uses. Without the effort to explicitly remove existing uses
of a chemical, there will be a substantial lag between the restrictions on new use, and the
elimination of chemical use as a source to humans and the environment. In the case of
flame-retarded items, the product lifetimes vary widely, from smartphones (2-6 years) to
building insulation (30-50 years), suggesting that responses to regulations will be



significantly delayed for flame retardants predominantly used in insulation (van der Schyff
et al,, 2023a).
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Figure 2 Results of breakpoint analysis for PBDEs in human milk for Europe for individual PBDE congeners:
BDE-47, BDE-99, BDE-153 and BDE-209. The shaded area indicates 95th percent confidence interval. The
dotted blue line indicates when regulation was implemented by the Stockholm Convention (2009: BDE-47,
-99, and -153; 2019: BDE-209). From van der Schyff et al. (2023a).

The differing impact of regulations restricting production vs. required removal from use
are seen in a global evaluation of the impact of policy of the management of PCB stocks.
PCBs were widely used in electrical equipment, and as plasticizers and flame retardants
from 1930s to 1980s (Breivik et al., 2002). Due to concerns about their persistence and
toxicity, restrictions were introduced in many jurisdictions over the 1970s and 1980s,
eventually eliminating the intentional production of PCBs (Breivik et al., 2002; Melymuk et
al., 2022). However, many existing uses remained, as early laws restricted only production,
and did not include a requirement to remove existing PCB stocks from use. PCBs are
included in the Stockholm Convention which includes a 2025 deadline for removal all PCBs
from use. Therefore, parties to the Stockholm Convention are required to take active
measures to remove PCBs from use, which in most regions has resulted in decreasing
stocks of PCBs (Melymuk et al., 2022, Appendix 2). However, the USA, notably with the
highest historical PCB use per capita, is not a party to the Stockholm Convention, and as
such, has not enacted laws requiring removal of PCBs from use. A comparative analysis of
the implications of this regulatory difference examined PCB stocks over the past 15 years
in Canada and Czechia (parties to the Stockholm Convention) compared with the USA (as
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a non-party). Our analysis identified that the active removal of PCBs resulted in a >90 %
reduction in stocks of PCBs in Canada and Czechia, attributed to the active measures
undertaken to ensure compliance with the Stockholm deadlines, while USA has had only a
3 % decline, showing that without active policy measures to require chemical
elimination, lag times between initial restrictions and eliminations of exposures can
be very substantial (Melymuk et al., 2022).

It is not only chemicals policy that directly impacts chemical use and therefore exposure,
but other policies that trigger chemical use. The incorporation of flame retardants in
products is primarily driven by regulations: the flammability standards to which an item
must conform in order to be sold on a given market. Such flammability standards exist for
building materials, vehicles, and in some jurisdictions, for upholstered furniture (Stapleton
et al, 2012), and we can see evidence of regional differences in these flammability
standards on human chemical exposure.

An early decision introduced by the state of California in the 1970s has had widespread
implications for human exposure to flame retardants. California introduced a standard
called TB-117 which required a high resistance to flame in upholstered furniture (Stapleton
et al,, 2012). Because of shared markets, this flammability standard indirectly impacted the
whole USA, and to some extent, Canada, as furniture manufacturers tend to conform to
the highest standards (rather than manufacturing dedicated items for California). The
introduction of this flammability standard resulted in the high use of synthetic organic
flame retardants in upholstered furniture to meet this standard (Stapleton et al., 2012). For
the period of 1970s-2000, this flammability standard was primarily met by the
incorporation of a commercial mixture of polybrominated diphenyl ethers (PBDEs),
specifically c-pentaBDE, a commercial mixture of tetra, penta- and hexabromodiphenyl
ether isomers. The majority of the global use of c-pentaBDE was in the USA, in large part
as additives to upholstered furniture (Abbasi et al., 2019).
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Figure 3. Box-and-whiskers (horizontal lines are medians, 95% confidence intervals, minima, and maxima)
of individual PBDE congeners: A) BDE-47, B) BDE-99, C) BDE-153, and D) BDE-209 concentrations in
different regions (CSA= Central- and South America and the Caribbean), in breast milk data collected after
year 2000. Non-parametric ANOVA tests (Kruskal-Wallis with Dunn's post-tests) were conducted to
determine significant differences. From van der Schyff et al. (2023a).

We see clear impacts of this flammability standard and the high use of PBDEs in USA when
comparing measurements of PBDEs in environmental and human samples from USA vs.
other countries. Our meta-analysis of existing biomonitoring data for PBDEs in human
breast milk clearly identified that North American women had levels of PBDEs in their
breast milk 1-2 orders of magnitude higher than other regions (Figure 3), attributed to the
higher use of PBDEs in USA, resulting in higher direct and environmental exposures.
Moreover, we noted similar variations in a comparison of American vs. Canadian and Czech
homes: concentrations of PBDEs measured in surface dust from USA found levels that were
consistently 1-2 orders of magnitude higher than in Czechia, and similar geographic
differences were seen in other indicators of indoor contamination — surface wipes and
indoor air (Figure 4, Venier et al,, 2016, Appendix 3).
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Figure 4 Boxplots of concentrations for selected PBDEs congeners. The plots share the same y-axis
concentration scales although the units are different for each matrix: dust is ng/g, window film is ng/m2,
and air is pg/m>. Within each matrix, boxes that share the same letter are not statistically significantly
different at a 5% level in an ANOVA analysis using the Tukey's test. From Venier et al. (2016).

The similarity in exposure profiles in many populations further emphasizes the importance
of regulatory policy and other broad societal factors in driving exposures. In the recent
HBM4EU (Human Biomonitoring for Europe) aligned studies, indicators of exposure to
many chemicals were similar across populations from different regions (Govarts et al,
2023). We found that a urinary metabolite of triphenyl phosphate (TPHP), an
organophosphate ester (OPE) flame retardant and plasticizer widely used in consumer
products (van der Veen and de Boer, 2012), was detected in >99% of the European
children measured, with medians across all nine countries within the range of 1.43 to 2.43
Mg/g creatinine (Figure 5, van der Schyff et al, 2023b, Appendix 4). We noted similar
homogeneity in a study of flame retardant and plasticizers in the homes and dermal wipes
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of 51 Canadian women: a consistent similarity in the profiles of both chemical groups was
noted in wipes from the hands of 51 unrelated women, demonstrating the ubiquity of
the target chemicals in modern environments, regardless of the participants’ home
contents, activities, or other personal characteristics (Diamond et al., 2021, Appendix
5).
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Figure 5 Box plot of creatinine-adjusted concentrations of diphenyl phosphate (DPHP), a metabolite of
TPHP, for Belgium (BE), Czech Republic (CZ), Germany (DE), Denmark, France (FR), Norway (NO), Slovenia
(SI), and Slovakia (SK). The box indicates median, 25% and 75% percentiles. Whiskers indicate 5% and 95%
percentiles. From van der Schyff et al. (2023b). The table on the right groups the countries according to
where significant differences exist between urinary concentrations, e.g., DK is lower than all other countries,
while DE and NO are similar concentrations.

2.2LIFESTYLE IMPACTS ON CHEMICAL EXPOSURE

While policy and regulations have broader societal implications on chemical exposures,
many of the differences in human exposure to chemicals are driven by individual variations
in lifestyle and behaviour. For example, while our HBM4EU study found only a 50%
difference in population medians of diphenyl phosphate (DPHP; metabolite of TPHP)
across countries, the variation within individual populations far exceeds that, covering a
10-fold range in most regions (Figure 5), suggesting the importance of individual factors
in controlling exposures.

Variations in the use of personal care products (PCPs) within a population is a clear source
of within-population variations in exposures. Use of personal care products has been linked
with exposures to synthetic chemicals used as additives in the products or their packaging.
This includes exposure to TPHP from nail polish use (Mendelsohn et al., 2016), exposure to
synthetic fragrance compounds from the use of perfumes (Nakata et al, 2015), and
exposure to UV filters from sunscreen use (Krause et al., 2017). In Czech teenagers and
young adults, we found that higher use of PCPs is associated with higher levels of
phthalate ester metabolites in urine (Stuchlik FiSerova et al., 2022, Appendix 6), as
phthalate esters are used as carriers and plasticizers in PCP formulations and
packaging, and this link has been shown in other analyses of biomonitoring data for both
men and women (Fruh et al,, 2022; Nassan et al., 2017).
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The case of PCPs is also an example of how shifts in personal behaviour can alter chemical
impacts. In many markets, including the cosmetics market, there is an increasing share of
"green” products and a societal shift towards what are perceived to be “safer” products can
also translate into shifts in chemical exposures (Chin et al., 2018). Studies evaluating the
impact of a shift to products “free-from” certain chemicals have shown impacts: when
consumers intentionally replace products with those with lower levels of parabens, UV
filters and biocides, indicators of exposure, in this case urinary metabolites, have been
shown to decrease (Harley et al., 2016). However, there remains many elements of
uncertainty in the shift towards “safer” products; one important one is the uncertainty
associated with various green labels and other marketing elements suggesting green/safe
products. The use of key phrases associated with “safer” products (e.g. eco, bio, free-from)
can in some cases constitute “greenwashing”. In a set of 50 products available on the Czech
market, we observed no significant difference in concentrations of parabens and triclosan
between conventional PCPs and those with a “green”-indicating label, suggesting a
disconnect between a societal shift towards interest in safer products, and actual human
exposure (van der Schyff et al., 2022, Appendix 7). Thus, in some cases, shifts in personal
behaviour may not have the expected or intended impact, and it is crucial that
recommended actions to reduce exposure to hazardous chemicals have a clear
scientific backing.

Other individual/household behaviours can also impact chemical exposures, in the case of
multiple flame retardants (TPHP, tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), and BDE-
47), biomarkers of exposure in children were higher those whose homes had a lower
cleaning frequency (van der Schyff et al, 2023b). Given that indoor dust is a known
reservoir of flame retardants (Jilkova et al,, 2018; Venier et al., 2016; Vykoukalova et al.,
2017) removing dust from living spaces is a good way to limit exposure, and has been
linked to lower levels of flame retardants in indoor environments (Sugeng et al.,, 2018).
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2. 3ENVIRONMENT AS A DETERMINANT 0F
CHEMICAL EXPOSURE

Occupation is known to be a key determinant of
9%

B exposure for many occupations associated with high

chemical releases, for example, e-waste processing

\ (Balasch et al.,, 2022; Julander et al., 2014; Nguyen et al.,
>5% 2019) and construction (Estill et al., 2020; Jarvholm,

2006; Wingfors et al., 2006). However, with the ubiquity

of synthetic materials containing additive chemicals in

31%

Home indoors all indoor environments, it is not only industrial
Work indoors occupations that are associated with chemical
= Other indoors (shop, vehicle, exposure, but rather all time spent indoors. In
Soidurant etc) developed countries, we spend an average of 90% of

. _ o our time in indoor spaces (Figure 6), largely distributed
Figure 6 Typical distribution

of time for adult, Prague. Data
from Schweizer et al. (2007). ~ these environments are key determinants of our

between home and work/school, and consequently,

chemical exposures (Matz et al., 2014; Schweizer et al.,
2007).

When spending time indoors, we inhale indoor air, including indoor aerosols, and through
hand-to-mouth behaviours, accidentally ingest settled dust particles, which can be a
particularly large reservoir of lipophilic compounds (Weschler and Nazaroff, 2010). We
additionally have direct contact with consumer products and dust particles, leading to
potential dermal exposure (Weschler and Nazaroff, 2012). While initial concerns about
indoor environments focussed largely on inhalation exposure, and this is often dominant
in occupational exposure settings, non-dietary ingestion and dermal contact are important
exposure pathways in residential and non-industrial settings (Lioy et al., 2002; Salthammer
et al,, 2018). Young children are particularly susceptible to high exposures to house dust
given their increased frequency of hand-to-mouth behaviour and mouthing of objects
(Moya and Phillips, 2014); ingestion of indoor dust is the dominant pathway for young
children’s exposure to some flame retardants (Demirtepe et al., 2019; Johnson-Restrepo
and Kannan, 2009). Dermal exposure, although receiving limited attention, also appears to
be an important pathway. Comparisons of hand wipe profiles of Canadian women with the
chemical profiles on the surfaces of their electronics found similarities in the profiles
between the flame retardants in hand-held electronics and their hand surfaces (Diamond
et al, 2021), although substantial uncertainty remains regarding dermal penetration.
Estimates of the contribution of inhalation, ingestion and dermal exposure pathways in
Slovak children found that dermal contact contributed ~30% of total exposures for
PBDEs and halogenated OPEs (Demirtepe et al., 2019, Appendix 8). There is a large set of
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studies suggesting that the concentrations of air and dust in indoor spaces are associated
with human exposure to a range of chemicals, notably for flame retardants, PCBs and
phthalate esters (Coakley et al., 2013; Fromme et al., 2014; Herrick et al., 2011), and thus
determinants of indoor environmental quality will also be determinants of human exposure
to selected chemicals.

The age of a building is frequently cited as a primary environmental factor impacting
chemical levels in indoor air and dust. There are two layers to this age impact. One is related
to chemical regulations as discussed in section 2.1. Older buildings can contain elevated
residues of chemicals which are now restricted, particularly those that were built at the
time of peak use of some legacy POPs of concern, e.g., PCBs and DDT. In some cases, this
is related to documented past use of the chemicals indoors. For example, a wood
preservative called pentalidol (2% DDT; 5% pentachlorophenol and 0.1% y-
hexachlorocyclohexane (HCH)) was applied in the Baroque theater of Cesky Krumlov Castle
in the 1970s and 1980s to address dry rot, and this resulted in acute health impacts in the
1990s, before remediation removed 5 t of contaminated material (Holt et al., 2017,
Appendix 9). However, even after this removal exceedances of exposure guidance
values remained for DDT and HCHs, and indoor levels were orders of magnitude
above background levels (Holt et al, 2017), indicating the persistence of these
chemicals indoors, as well as their emission from secondary indoor sources. But in
many cases, surveys of indoor air or dust find an association between levels of legacy POPs
in indoor air and dust without documented sources, indicating past general use of the
chemicals. For example, higher levels of OCPs were detected in dust and air from
Slovak homes built before restrictions on the chemical use (Figure 7, Demirtepe et al.,
2019, Appendix 8). This is in line with what is the known about past use of both PCBs and
DDT, as uses were very diverse, but were not well-documented.
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Figure 7 Differences in indoor dust and air concentrations of YDDX (a and b) and YHCH (c and d) measured
in homes built before (n=18 for YDDX, n=22 for YHCH) and after (n=14 for YDDX, n=10 for YHCH)
OCPs controls were implemented in Czechoslovakia. Excerpted from Demirtepe et al. (2019).

The properties of indoor environments are ideal for the long-term persistence of chemical
residues. The potential for degradation is much lower than outdoors due to lower solar
radiation, lower levels of atmospheric oxidants, high surface area-to-volume ratios, small
variations in temperature, and low air exchange (Abbatt and Wang, 2020). As a result,
chemical half-lives indoors can be substantially longer than what is estimated for outdoor
environments, and these are poorly characterized (Abbatt and Wang, 2020).

However, on top of differences seen due to regulations, in newer buildings we observe the
impact of a transition to indoor environments based heavily on synthetic polymer-based
materials. The past 70 years have seen a substantial increase in the amount of synthetic
materials used in indoor spaces (Weschler 2009), and in conjunction, an increase in the
amount of chemical additives found in these materials. Typical building materials and
consumer products today have a heavy reliance on plastics (e.g., building materials), and
consequently, higher use of chemical additives such as plasticizers, flame retardants,
stabilizers and antioxidants in indoor spaces. Many of these chemicals are semi-volatile,
and the exposure pathways are then multifaceted, as these semi-volatile organic
compounds (SVOCs) are distributed through multiple phases in indoor environments,
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leading to exposure through air, dust and surface contact (Weschler and Nazaroff, 2008).
This wide range of synthetic chemicals used as additives in building materials and
furnishings are now consistently detected in most indoor spaces, the most notable being
phthalate esters, organophosphate flame retardants, chlorinated paraffins, and siloxanes
(Lucattini et al., 2018).

Building materials and consumer products have very large ranges in the presence of
additive chemicals. In an examination of the chemical content of 126 Czech consumer
products and building materials, we identified order of magnitude ranges even within
individual product groups. For example, levels of perfluoroalkyl acids ranged from
0.0068-34.3 ug/kg across 16 insulation materials (BeCanova et al., 2016, Appendix 10), while
BDE-209 ranged from 1.77-626000 pg/kg (Vojta et al., 2017a, Appendix 11). It is clear that
the chemical content of consumer products and building materials has a direct impact on
indoor environmental levels and human exposures, however the larger variability in
product groups creates a challenge in generalizing sources. Through the subsequent
introduction of new materials and use of those materials in new buildings, we see an
increase in the indoor environmental burdens of chemicals. During the construction phases
of a university lecture room, the levels of flame retardants increased in steps with the
addition of carpet, furnishings, and most substantially, with turning on of computers,
suggesting the specific contribution of these items to the indoor environmental burden of
chemicals (Vojta et al., 2017b, Appendix 12). We see in new indoor environments a
transition from the older brominated flame retardants (Venier et al., 2016, Appendix 3)
to the replacement chemicals, which today are found at levels 1-3 orders of
magnitude higher than older BFRs (Vykoukalova et al., 2017, Appendix 13).

Ventilation rates are another key factor impacting chemical levels indoors: for most
synthetic chemicals, higher ventilation rates will lead to reductions in indoor chemical
levels, as the primary chemical sources are in the indoor space. In urban areas, the impact
of ventilation as a source to outdoors is substantial enough to one of the main factors
driving outdoor air concentrations of synthetic organic chemicals (Bjorklund et al., 2012;
Melymuk et al., 2012). In Czech homes, lower levels of novel flame retardants were
observed in summer compared with winter, attributed to higher summer air exchange
rates due to open windows (Melymuk et al., 2016, Appendix 14).

However, many more indoor determinants are chemical-specific. The presence of PVC
flooring in homes has been associated with higher levels of phthalates (Bornehag et al.,
2005), while the presence of TVs and electronics in general has been associated with higher
levels of flame retardants (Harrad et al., 2009; Muenhor and Harrad, 2012; Yang et al., 2020).
Reductions in indoor settled dust levels of bis(2-ethylhexyl)phthalate (DEHP), a phthalate
ester that has now been restricted in many applications, suggest that stocks and indoor
uses of DEHP are being rapidly removed from indoor environments, and provide evidence
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of the effectiveness of restrictions in reducing individual chemical exposures
(Demirtepe et al., 2021, Appendix 15).

While for many chemicals the indoor environment is the dominant exposure determinant,
outdoor exposures can be important for certain chemicals and lifestyle patterns. Of the
exposure pathways outside, air inhalation is most often the focus, although soil ingestion
can be substantial for young children (Ozkaynak et al., 2023). Established air monitoring
networks exist to track synthetic chemicals in outdoor environments. For SVOCs, these are
notably the MONET networks (White et al., 2023) and the GAPS network (Pozo et al., 2006;
Saini et al, 2020), both of which rely on passive air sampling to increase the spatial
resolution of available data. Passive air sampling (PAS) relies on passive diffusion of
chemicals from air to a sorbent (Shoeib and Harner, 2002; Wania and Shunthirasingham,
2020), in the case of MONET and GAPS these sorbents are based on polyurethane foam
(Harner et al, 2013; Melymuk et al, 2011), XAD resin (Armitage et al., 2013), or a
combination of both (Schuster et al., 2012). They have the advantage in outdoor
environments of not requiring electricity, being low-cost and easy to deploy, which has
greatly increased the spatial resolution of outdoor air monitoring. However, even with the
greater spatial resolution possible because of passive sampling, measurements are limited
to point locations, which may not reflect the small-scale variations observed in populated
areas (Melymuk et al,, 2013, 2012). To supplement these air monitoring networks, data
modeling techniques can be incorporated to provide better spatial resolution of air
concentration estimates that can be incorporated into exposure assessment (Hoek et al,
2008; Mikes et al., 2023). Land use regression has proved to be a useful technique to
translate coverage of passive air sampling networks into concentration maps providing
better spatial resolution. For Czechia, outdoor ambient air concentrations of PCBs were
found to be dependent on soil concentrations and topography, while PAHs were
related to fuel consumption and industrial sources, as well as topography (White et
al., 2021, Appendix 16); the identification of such relationships allows point passive sampler
measurements to be extended to provide broader spatial coverage. The regression
relationships generated by this analysis could be used to produce maps highlight regional
variations in outdoor concentrations (Figure 8). Similar techniques have been applied for
other air pollutants (Mikes et al., 2023) and SVOCs in different locations (Melymuk et al.,
2013).
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ZPCB Atmospheric Levels

Figure 8 Application of the LUR models across all of Czechia, indicating the estimated gradient of low to
high atmospheric levels of 2;PCB, (R? = 0.62). Cities with population > 100,000 are indicated on the map.
From White et al. (2021)

3 TOOLS AND TECHNIQUES FOR UNDERSTANDING
CHEMICAL EXPOSURES

3.1AIR SAMPLING TECHNIQUES

A comprehensive understanding of human exposure requires a diverse set of sampling,
analytical, and data-handling tools. One fundamental step in characterizing human
exposure pathways is selection of representative and unbiased environmental samples. For
characterization of indoor environments, a set of sampling techniques unique to indoor
spaces is often used.

Passive air samplers, particularly polyurethane foam-based passive air samplers (PUF-PAS)
have been a major innovation in indoor environments, with the significant advantages of
being non-intrusive indoors and providing integrated concentrations, typically over one
month (Bohlin et al., 2014; Vojta et al., 2024). While some uncertainty remains in the
conversion of masses sampled to quantified air concentrations due to uncertainty in air
uptake to the sampler (Wania and Shunthirasingham, 2020) indoor environments are
actually ideal for PAS, as they are not subject to the large variations in temperature and
wind speed, which are known to vary sampling rates outdoors (Bohlin-Nizzetto et al., 2020;
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Chaemfa et al., 2009), and lower levels of atmospheric oxidants, which should minimize the
within-sampler degradation that has been noted in outdoor PUF-PAS (Melymuk et al.,
2017). The applicability of PUF-PAS is broad, however some limitations exist. As a sorbent,
PUF is best suited to lipophilic compounds of intermediate volatility — more volatile
compounds may be susceptible to non-linear uptake or breakthrough (Melymuk et al.,
2014, Appendix 17), while polar compounds are not well-captured by the sorbent. This
presents a particular limitation for their application to per- and polyfluoroalkyl substances
(PFAS), as PUF-PAS have not been found to have consistent uptake of many PFAS over
a typical deployment period, which precludes the conversion of masses sorbed to air
concentrations (Karaskova et al.,, 2018, Appendix 18).

PUF-PAS were originally developed for use outdoors (Bidleman and Melymuk, 2019;
Harner et al., 2006), and this remains the most substantial use (e.g., GAPS and MONET, as
mentioned in above). The low cost and ease of use has led to many regional variations in
the samplers with slight differences in sampler geometry, sorbent mass and density
(Melymuk et al., 2021, Appendix 19). However, the sampler performance appears
substantially robust that such small variations do not lead to large impacts on
chemical uptake to the PUF; variations caused by sampler geometry are within the same
ranges as uncertainties due to wind and temperature impacts on the samplers (Bohlin-
Nizzetto et al,, 2020; Chaemfa et al.,, 2009; Melymuk et al., 2021).

3.20UST SAMPLING TECHNIQUES

Many broad surveys of chemical pollution in indoor spaces use settled indoor dust as an
indicator of indoor levels and human exposure (Lioy et al., 2002; Melymuk et al., 2020).
Dust has the advantage of being easy to collect, a relatively stable matrix that can be easily
transported, and typically has high levels of SVOC chemicals, making it a good screening
matrix for a broad set of compounds. In addition, unlike PAS, it presents a reliable matrix
for the quantification of indoor levels of PFAS (Karaskova et al, 2016), which are of
particular interest given the EU universal PFAS restriction proposal of 2023 (ECHA, 2024).
However, in order to collect a dust sample representative of the average conditions of an
indoor space, care must be taken to collect an aggregated sample: within an indoor space.
Substantial variations in the chemical levels in indoor dust exist between different surfaces
(Jilkova et al., 2018, Appendix 20); samples from individual surfaces can be strongly
influenced by individual products and not representative of the whole room
conditions. For example, in floor dust from classrooms was substantially elevated in two
flame retardants, TCIPP and DBDPE, relative to dust on surfaces, whereas in a flat, surface
dust was elevated in the same compounds (Figure 9, Jilkova et al., 2018). Given the small-
scale spatial heterogeneity in dust concentrations, composite or aggregated samples are
needed to reflect average exposures; localized samples can show substantial bias.
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Figure 9 Area density of TCIPP and DBDPE in a flat and a classroom floor dust and wipe samples.
Horizontal lines show mean and whiskers show standard deviation. Extracted from Jilkova et al. (2018). SR
refers to Seminar room and CR refers to Computer Room.

3.3ANALYTICAL CONSIDERATIONS

While uncertainties in sampler configurations and implementation can impact data quality
and comparability across studies, the greater source of uncertainty is consistently due to
aspects of the laboratory analysis. In the global intercomparison of PAS configurations
discussed in Section 3.1, while sampler configurations accounted for 50% variations
between concentrations, laboratory analysis and quantification were responsible for
up to four orders of magnitude variations in concentrations of some POPs (Melymuk
et al., 2021, Appendix 19). Similarly, for FRs the variations in elements of the analytical
method across laboratories lead to substantial variations in reported chemical
concentrations and present challenges when comparing results across studies (Melymuk
et al,, 2018).

Given the diversity of chemicals of interest in indoor environments, interest is growing in
non-target and suspect screening analysis of chemicals. While these are starting to be
more widely used on indoor dust in particular, a challenge still exists in the comparability
and the ability to interpret this data at a sufficient quality necessary to understand
exposures (Caballero-Casero et al., 2021; Hollender et al., 2023; Rostkowski et al., 2019).
This will be one of the major future challenges as we develop the field of indoor exposure
assessment.

Moreover, interpretation of exposure data can rarely be effectively done in the absence of
other supporting information, taking the form of questionnaires, chemical use databases,
product content, and time-activity patterns. It is crucial that these datasets be given equal
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consideration as the chemical datasets, as evidence of exposures in the absence of source
information has limited value.

4 CONCLUSIONS

Our framework for understanding the drivers of chemical exposure provides a structure for
the identification of the most substantial drivers. The goal of exposure assessment is to
contribute to an overall risk evaluation and reduction process to identify chemical risks,
and provide the data needed to take actions to reduce such risks.

These actions can take many forms, be it requlatory, behavioural or technological, however,
the necessary fundament to selecting the correct actions is a sufficient understanding of
the sources and key factors driving the exposure. Thus, our evaluation of exposures in the
context of regulation, environment and personal behaviours provides a valuable resource
for both evaluation exposure, and where needed supporting actions to reduce risks.

Regulatory actions have been shown to have a clear impact on either increasing or
decreasing exposures, and ongoing effectiveness evaluation is crucial to support the most
effective implementation of chemical policy, and other regulatory actions that impact
chemical exposures (Chapter 2.1). Behaviour and lifestyle provide an additional, more
individual layer to understanding exposures, with the potential to lead to wide variations
in exposures within similar populations (Chapter 2.2). Finally, our environment, particularly
the indoor spaces where we spend the majority of our time, is a major driver of exposure
to selected chemicals (Chapter 2.3), and the impact of the environment and, in particular,
actionable solutions to improve environmental quality to reduce exposures, has not been
fully exploited in the current scientific framework.

We have developed a reliable set of sampling and analytical tools that can enable us to
explore the links between environment, behaviour, policy and exposure (Chapter 3). Many
of these tools have the advantage of broad applicability for chemicals of interest, and ease
of use enabling widespread data collection. However, better interlinkages and integrations
of techniques are needed to allow more comprehensive determinations and data gap-
filling.
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ABSTRACT: Flame retardant (FR) exposure has been linked to | [
several environmental and human health effects. Because of this, " 19|73 B A zo|19 i
the production and use of several FRs are regulated globally. We ’ Bra— || \Gsrn
reviewed the available records of polybrominated diphenyl ethers &
(PBDEs) and hexabromocyclododecanes (HBCDDs) in human

breast milk from literature to evaluate the efficacy of regulation to

reduce the exposure of FRs to humans. Two-hundred and seven

studies were used for analyses to determine the spatial and o
temporal trends of FR exposure. North America consistently had

the highest concentrations of PBDEs, while Asia and Oceania
dominated HBCDD exposure. BDE-49 and -99 indicated i
decreasing temporal trends in most regions. BDE-153, with a

longer half-life than the aforementioned isomers, typically exhibited

a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to
determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around
the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies
have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have
been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the
remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
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Bl INTRODUCTION environment and are ubiquitous across environmental

8,9 . 10—12
Flame retardants are added to a wide range of consumer systems.”” PBDEs have been reported in human blood,

products and materials in order to reduce ignition or adipose tissues,"” " and milk'*™"” since the early 1990s, and

flammability of a material or fulfill fire safety requirements.' evidence of human exposure to HBCDDs arose shortly

However, past efforts to reduce flammability through the thereafter.”*™**

addition of synthetic organic flame retardants have led to PBDE exposure has been associated with numerous adverse

negative impacts on human and environmental health due to health outcomes, including alterations to thyroid function,

exposure to harmful chemicals.” reproductive systems, and breast cancer,”**® with strong
Polybrominated diphenyl ethers (PBDEs) and hexabromo- evidence for neurodevelopmental impacts, including lower IQ

cyclododecanes (HBCDDs) were among the dominant FRs and ADHD.?>”® Elevated levels of PBDEs in breast milk have
used for decades.”® The three technical mixtures of PBDEs

(penta-, octa-, and deca-BDE) had multiple uses, including
polyurethane foam, electrical and electronic equipment,
building materials, and vehicle parts.” Technical HBCDD (a
mixture of the stereoisomers, a-, f-, and y-HBCDD, with y-
HBCDD being the most abundant) was primarily used in
electronics, textiles, and especially in expanded (EPS) and
extruded polystyrene (XPS) applied as construction and
packing materials.”

PBDEs and HBCDDs are known to be persistent,
bioaccumulative, and subject to long-range transport in the

specifically been associated with neurodevelopmental effects

and alterations to the gut microbiome in young children.””*

Similar adverse effects are associated with elevated HBCDD
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Table 1. Countries Used in This Study Grouped According to the United Nations Geoscheme

region countries included PBDEs HBCDDs
Congo South Africa South Africa
Cote Mauritius Tanzania
d’Ivoire
Africa E;;iuu II;/I;;ZCCO ;Zi?sia 7 studies”” ™% 5 studies”” ™
Ethiopia Nigeria Uganda
Ghana Senegal Zambia
Kenya
China Japan Syria
Georgia Macao Taiwan
Asia India Philippines Tajikistan 53 studies'®*50713¢ 15 studies®"579> 1327135137144
Indonesia Russia“ Vietnam
Israel South Korea
Central and South Antigua and  Chile Peru
America and Barbuda _
Caribbean Barbados Haiti Suriname 3 studies "1 2 studies™"
Brazil Jamaica Uruguay
Belgium Greece Romania
Bulgaria Hungary Russia”
Croatia Ireland Slovakia
Cyprus Italy Spain
Czechia Lithuania Sweden
Europe Denmark Luxembourg  Switzerland 61 studies”'92230S9BLI46-200 5o g 23,59,76,81,146-151,153-159,167,185,189,193,201-204
Faroe Moldova Turkey
Islands
Finland Netherlands UK
France Norway Ukraine
Germany Poland
North America Canada Mexico USA 25 studies' > 7077812057222 S studies®"77 788183
Oceania 1\.1'1'5'21‘3113 Kiribati Tonga 7 studies”*~>*® 2 studies®>*°
Fiji New Zealand  Tuvalu

“General samples from Russia were included within the European category. When a study specified a geographic region that was within the Asian

part of Russia, it was included in Asia.

concentrations, including endocrine disruption, specifically
thyroid, neurobehavioral, and developmental disorders.”>*’

In response to concerns regarding the environmental and
human health impacts of certain FRs, actions were taken to
reduce production.32 In 2004, the European Union stated that
“in order to protect health and the environment the placing on
the market and the use of pentaBDE and octaBDE and the
placing on the market of articles containing one or both of
these substances should be prohibited”,*® and in the same year
these mixtures were voluntarily withdrawn from the U.S.
marketplace by their manufacturers.’® The lower brominated
PBDE congeners, tetra- and penta-BDE (main components of
commercial penta-BDE**) and hexa- and hepta-BDEs (main
components of commercial octa-BDE*)*® were listed in the
Stockholm Convention on Persistent Organic Pollutants
(POPs) in 2009, requiring parties to eliminate the production
and use of the compounds. Deca-BDE, the fully brominated
PBDE molecule and main component of the decaBDE
commercial product,”’ was similarly listed in 2017.°° In
2008, HBCDDs were recognized as substances of very high
concern (SVHC) in the EU due to environmental and human
health risks*”*’ and were added to the Stockholm Convention

in 2013.*" In specific cases, individual countries were permitted
continued production of HBCDDs until 2024.”

The evaluation of temporal patterns of a chemical’s
concentration in a predetermined medium is an effective tool
to determine the efficiency of policy in mitigating chemical
exposure.”” Recent studies have identified declines in
components of the penta- and octa-BDE technical mixtures,”
in air (1993—2018),* soil (1998—2008),*" sediment (2002—
2012)," sewage sludge (2004—2010),"° and fish (1980—
2009),"” while BDE-209 has been stable or increasing in many
matrices.***®** In humans, declines in levels of less
brominated PBDEs and a more recent plateau have been
identified in several countries, however, this is not uniform
across regions or matrices:”*>°%°" there is a lack of
understanding of how generalizable these regional trends are.
For HBCDDs, there is even less evidence of a global trend.
Although time trends of HBCDD concentrations in multiple
environmental matrices’> >* have been determined, analysis of
temporal patterns of HBCDDs has been limited to regional
scales. No consensus or clear global time trend of HBCDD
concentrations in humans has been identified,” with some
studies reporting an increase of HBCDDs,*™>® others a
decrease®” or no trend.”®*’

https://doi.org/10.1021/acs.est.3c02896
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Studying the effectiveness of policies concerning FRs
through time trend analysis of biomonitoring data presents
inherent complexities. Different FRs, each with distinct
chemical structures, are incorporated into diverse applications
such as furniture, electronics, and building insulation, which
are associated with different emission and exposure routes.”
After restriction, continued presence of FR-containing
products further complicates this, as different product types
have very different replacement rates (e.g.,, smartphones, 2—6
years®” vs building insulation, 30—30 yrs®'). The environ-
mental 6persistence of compounds is generally longer in-
doors®* and indoor levels are sustained until active removal
of sources.””® Exposure to FRs is further influenced by
regional factors like building and cleaning practices and dietary
patterns.® Moreover, the differing persistence of FRs within
the body complicates our understanding of exposure,”” with
some FRs possessing longer half-lives in human tissues”® and
partitionin§ within body tissues varying by compound/
congener.6 "7 Concentrations of POPs in human tissues
typically reflect long-term exposures, for example, variations
of PCB concentrations in breast milk levels can be explained by
differences in early life exposures rather than current dietary
exposures.”' Despite the above-mentioned complexities, our
insight into the effectiveness of restrictions and the remaining
risks to human populations from legacy FRs can be improved
by multistudy analyses to understand and interpret the global
time patterns of PBDEs and HBCDDs in humans.

In this analysis, we first review available records of PBDE
and HBCDD in human milk to determine time patterns of
global human exposure to FRs. Second, we evaluate the impact
of regulations that were introduced over the past 20 years on
exposure to these legacy FRs. Finally, we investigate the
regional differences in exposure to FRs in relation to use. We
supplement this with a review of past studies evaluating
temporal patterns of PBDEs and HBCDDs in human matrices,
to provide a comprehensive review of trends in global
exposure.

B METHODS

Rationalization of Study Matrix. It is impossible to select
a single biological matrix that encompasses the global
population, as well as all target compounds. Due to the
lipophilic nature of PBDEs and HBCDDs, they are best
evaluated through matrices such as blood serum or breast/
maternal milk.”” Breast milk has a high lipid content and can
be collected noninvasively, making it a reliable and accessible
matrix for assessing body burdens of PBDEs and HBCDDs, as
well as many other POPs. The Stockholm Convention, in
cooperation with the World Health Organization, has
identified human milk as a core matrix of its Global Monitoring
Plan and su?ported with routine quantification in pooled milk
samples.””””

In addition to its importance in routine monitoring
programs, maternal milk is an ideal matrix for meta-analyses
of biomonitoring data because of the relative homogeneity of
the study population: all female, with an age range generally
spanning 18—4S years. Moreover, breast milk is not only an
indicator of human exposure but also represents a direct
exposure route to infants, and breast milk is typically the most
important exposure pathway of young children to POPs,
including PBDEs.”*”*

Search Strategy and Selection Criteria—Human Milk
Meta-Analysis. A literature search of peer-reviewed studies

and reports produced by regulatory bodies (e.g, UNEP,
German Federal Environment Agency) was conducted using
ISI Web of Science and Google Scholar. The search was not
limited by years or language of publication. The search was
initially conducted in March 2020 and updated in September
2022. The following search terms were used.

For HBCDDs. All fields: [hexabromocyclododecane* OR
HBCD*] AND [(human milk) or (breast milk)]. This search
produced 168 results, which were evaluated for their
appropriateness. The criteria for inclusion were that the
studies provided lipid-standardized HBCDD levels in human
milk (either isomer-specific HBCDD or Y HBCDD) and
included basic information on the study population (country of
residence, sampling year). Of the initial 168 studies identified,
49 met the criteria and were used for further analysis (Figure
S1, data sources listed in Table 1).

For PBDEs. All fields: [polybrominated diphenyl ether* OR
PBDE*] AND [(human milk) or (breast milk)]. This search
identified 1204 results, which were then evaluated for their
appropriateness. Only studies reporting individual PBDE
congeners were included, and four congeners were selected
as indicators due to their prevalence in literature: BDE-47,
BDE-99, BDE-153, and BDE-209. Studies also had to include
lipid-standardized concentrations for at least one of these
congeners and include information on the study population
(country of residence, sampling year). Of the initial 1204
studies, 158 met the criteria and were used for further analysis
(Figure S1, data sources listed in Table 1).

All available data (either primary data reporting individual
concentrations or all summary statistics) were extracted from
the articles to a spreadsheet database. Data reported from
pooled samples were treated as mean values.

Data Set Standardization. Statistical evaluation was
carried out by R software (version R 4.1.2). The data sources
were separated by compound, sampling location, and/or date
of sample collection. These records were aggregated by
country and date of sampling, characterized either by mean
or median value, minimum, Sth, 10th, 25th, 75th, 90th, and
95th quantile and maximum or any combination of these
descriptive statistics. If all primary data/summary statistics
within an aggregate record were taken during one year, the
aggregated record was assigned to that year. In the other cases,
the aggregated record was assigned to the middle point
between the years of the oldest and the newest primary data/
summary statistic.

For HBCDDs, 41 aggregated records included both a-
HBCDD and the sum of &, f, and y-isomers. These 41 records
were used for estimating the contribution of a-HBCDD to the
sums. This contribution was 94.0%, showing clearly that a-
HBCDD dominates over the f and y isomers. This 94.0% was
then used to extrapolate a-HBCDD from records where only
Y HBCDDs were reported for the original data set, resulting in
260 aggregated records for a-HBCDD.

Primary FR data from five locations were used to
establish that -HBCDD and PBDE concentrations in breast
milk have a general log-normal distribution of primary data
within an aggregate data record. On the basis of the log-normal
distribution assumption, the maximum likelihood estimation
was used to apply a log-normal distribution for each aggregated
sample and thus estimate its median value in cases where only
other summary statistics were reported. In a few cases, the
maximum likelihood estimate was not directly applicable since
the only descriptive statistic characterizing the aggregated
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sample was an arithmetic mean. In such cases, a median
standard deviation based on the rest of the samples was used
(0.62 ng/g lipid weight; lw for a-HBCDD, 0.32 ng/g Iw for
BDE-47, 0.23 ng/g Iw for BDE-99, 0.35 ng/g Iw for BDE 153,
and 50.15 ng/g lw for BDE-209) to derive quantiles describing
the expected log-normal distribution. Finally, since there are no
theoretical minimal and maximal values for the log-normal
statistical distribution, the min and max values were considered
as (1/n)th and (1—1/n)th quantiles for aggregated samples
with known n; for aggregated samples with an unknown
number of primary samples, n = 40 was used as it was the
median value of studies where n was specified (Figure S2).

Temporal Pattern Meta-Analysis. Data were grouped
regionally following the United Nations geoscheme (Table 1).
With the use of the aggregate data by region and sampling
year, a weighted Theil-Sen trend analysis was conducted,
assigning each aggregated sample a weight in the range of 0.1
to 1.0 for 10 to 100 primary samples and 1.0 for more than 100
primary samples. A weighted Mann-Kendall test was then used
for assessing the trends’ significance.

Breakpoint Analysis. An additional type of temporal
pattern analysis was applied to European and Asian data sets,
as these continents had the most complete records for both
PBDEs and HBCDDs and are of particular interest given the
early introduction of FR regulations. To evaluate whether this
early introduction of restrictions led to a change in the FR time
patterns over time, breakpoint analysis was applied to find a
time point when the slope of the trend breaks™” i.e.,
suggesting a change in the rate of change of a given FR
concentration in human milk. The breakpoint analysis
identifies the breakpoint by aiming for normally distributed
residuals of both linear trends before and after the breakpoint,
which indicates an optimal fit. The method searches for all
possible breakpoints (in this case in increments of whole years
only) and selects the breakpoint with the smallest sum of
squares of residuals. Only significant results according to the
difference of halving times before and after the breakpoint are
considered.”*”

Analysis of Geographic Patterns. Additional compara-
tive statistical analyses were conducted using Graphpad Prism
8.0.2 using all studies after the year 2000. Data were grouped
according to geographic region (Table 1). The concentrations
from the different regions were compared using Kruskall-Wallis
nonparametric ANOVA tests, and individual regions were
compared with all others using Dunn’s multiple comparison
tests. For geographic patterns, significance was set at p < 0.0S.

Limitations. The quality of the analytical work performed
in individual studies was not evaluated, in favor of allowing for
a greater breadth of data to be incorporated in the meta-
analysis. All studies were published in peer-reviewed journals
or as reports available from reputable national/international
organizations, leading to the assumption of an acceptable level
of data quality. Some reports (notably the UNEP/WHO data
included in the Stockholm Convention GMP reports) do not
include analytical information, although data are produced by
recognized, accredited laboratories, and exclusion of this data
would lead to a substantial loss in geographic coverage.
Additionally, older studies reflecting very early analyses of
PBDEs and HBCDDs may have more generous allowances in
terms of QA/QC; however, it was important for the temporal
analyses that these could be included. However, a consequence
of this is that not all studies will meet the most stringent QA/
QC standards.

While breastfeeding mothers present a relatively homoge-
neous population with respect to age and sex, some additional
factors can impact breast milk concentrations of FRs, and these
could not be incorporated into our meta-analysis, primarily
because of inconsistent data across studies.

Representativeness. Data from breastmilk only reflects the
chemical burden in the breast-feeding female population. The
prevalence of breastfeeding mothers also varies by socio-
economic status and cultural background.”*’

Parity. Some studies have shown that parity is related to
differences in levels of persistent compounds in breast milk.
Primiparous mothers have been shown to have higher
HBCDD concentrations than multiparous mothers,"** while
studies focused on PBDEs have not found a relation-
ship.*#1#729%231 As information on parity was not consistently
recorded for all data sources, we did not include this
confounder in our analyses and used all available data,
regardless of parity.

Duration of Lactation and Sample Collection. The timing
of breast milk collection within the lactation period varied
widely, from 1 week to 10 months after birth, although the
most typical was 3—8 weeks after birth, following the guidance
of the WHO/UNEP breast milk surveys.232 Whether this
impacts levels of PBDEs and HBCDDs in milk is unclear.
Some studies have reported variability'****” or significant
decreases”® in PBDE levels in breast milk up to a year
postpartum; however, Harrad and Abdallah™" reported no
change in HBCDDs in milk over 12 months of lactation.

Maternal Age. This is often identified as a determinant of
breast milk levels; however, this is directly related to the
understanding of the persistence of these FRs in the body and
temporal changes in exposures within a country.””* Older
maternal age has been associated with higher PBDE levels in
some studies in breast milk'***** and sera,”* while others
have found no association'®” or an inverse association of lower
levels in breast milk from older mothers.***"” Similarly for
HBCDDs, Fujii et al. identified age-dependency of y-HBCDD
in milk,"** but not other HBCDD isomers, while Drage et
al.”** found no age-dependency in HBCDDs in sera.

Selection of Breast Milk as Biomonitoring Matrix. While
breast milk has the advantage of being noninvasive and widely
monitored, BDE-209 preferentially partitions to serum lipids
rather than milk lipids,69 leading to proportionally lower levels
in breast milk compared with exposures. However, while
milk:serum partitioning can vary by congener/compound,”
the relative geographic patterns and temporal trends (1227
samples from 1973 to 2019) should be appropriately captured
by either matrix, as milk and serum concentrations are typically
well-correlated.”"® The limited number of spatial and temporal
studies conducted on certain compounds, such as BDE-209
and HBCDD in human breast milk is also a limitation for this
study.

Uncertainties Regarding Partitioning and Half-Lives of
PBDEs in Human Breast Milk. Very few studies have been
conducted on the human biological distributions and half-lives
of PBDE and HBCDDs. The existing evidence suggests higher
persistence of BDE-153 in the human body””*****” and
decreased partitioning to milk for higher molecular weight
FRs.”” As a result, comparisons of concentrations across
congeners would not necessarily reflect exposure trends;
however, the bulk of our analysis relies on trends built
individually for each congener and thus should not be
impacted by the uncertainty in partitioning and half-lives.
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Figure 1. Box-and-whiskers (horizontal lines are medians, 95% confidence intervals, minima, and maxima) of (A) BDE-47, (B) BDE-99, (C) BDE-
153, (D) BDE-209, and (E) a-HBCDD concentrations in different regions (CSA = Central and South America and the Caribbean), in breast milk
data collected after year 2000. Nonparametric ANOVA tests (Kruskal-Wallis with Dunn’s post-tests) were conducted to determine significant

differences.

Temporal Patterns: Search Strategy and Selection
Criteria. We supplemented our meta-analysis of temporal
patterns of PBDE and HBCDD exposure with a comprehen-
sive review of published time trends. A literature search was
conducted using ISI Web of Science and Google Scholar,
initially in March 2020, updated in September 2022. Search
terms for the temporal trend studies were a combination of
chemical-related terms (polybrominated diphenyl ether*,
PBDE*, hexabromocyclododecane*, HBCD*), matrix-related
(human, blood, serum, plasma, milk), and trend-related (time-
trend* or temporal*).

19110

For the temporal trend analysis of PBDEs, 268 data sources
were identified, and the data were further examined to identify
only studies that reported any of the four indicator PBDEs
(—47, =99, —153, or —209), reflected the general population
(not occupational exposure), reported basic biomonitoring
parameters (e.g, geographic region, matrix, year of sample
collection, number of samples), and had at least two time
points with harmonized analyses (e.g., by the same laboratory).
This resulted in 24 studies which were included in the
overview of temporal trends (Table S2). For the temporal
trend analysis of HBCDDs, the literature search identified 88
data sources, and the inclusion criteria (reported either a- or
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Figure 2. Weighted temporal trends of BDE-47, BDE-153, and a-HBCDD concentrations (ng/g lipid weight, Iw) in breast milk from Europe and
North America from literature. Shaded area indicates 95% confidence interval.

Y HBCDD, not occupational exposure, reported basic
biomonitoring parameters) led to the inclusion of 20 studies
(Table S3). The trends from these studies were extracted,
using the interpretation of the study authors to determine
whether a trend is classified as increasing or decreasing over
time, or whether no time trend is apparent.

B RESULTS

Spatial Patterns. Available data were not equally
distributed across all geographic regions. Most studies were
conducted in Europe and Asia, while Central and South
America, North America, and Oceania had only limited data
(Table 1). Very few studies on human biomonitoring of
HBCDDs have been conducted in North America, which is
surprising, considering that the region is known to have had
stringent flame retardant regulations and historically high use
of BFRs.”

Oceania had the highest median a-HBCDD concentration
in breast milk (2.7 ng/g lipid), followed by Asia (1.5 ng/g
lipid) and Europe (0.9 ng/g lipid) (Figure 1). The elevated
concentrations of @-HBCDD in breast milk from Oceania were
unexpected but may reflect a common market with many
products from Asian manufacturers and Oceania implementing
HBCDD regulations years later than Europe.”*® Breast milk
from Asia had significantly higher concentrations of a-

19111

HBCDD than milk from Africa, and Europe had significantly
higher concentrations than Central and South America (Figure
1).

The concentrations of BDE-47, -99, and -153 in breast milk
from North America were significantly higher than those from
Europe, Africa, Asia, and Central- and South America: BDE-
47, and -99 concentrations in North America were 39 and 65
times higher, respectively, than concentrations in Asia (Figure
1, Table S1). For the higher brominated compounds, North
America had 50 and 138 times higher concentrations than
Africa for BDE-153 and -209, respectively (Figure 1, Table
S1). Europe had significantly higher concentrations of BDE-99
than Africa, and Africa had significantly lower concentrations
of BDE-153 than all the other regions. For BDE-209, there
were fewer data records which limited the comparison. The
fact that BDE-209 is notoriously difficult to quantify due to
high molecular mass and chemical instability likely contributes
to the lack of data on levels in breast milk.**”**° For BDE-209,
concentrations in milk from Asia were substantially lower than
in North America, and no other regions had significant
differences (Figure 1).

Temporal Patterns. Africa, Oceania, and Central and
South America had limited or no data on BDE-209
concentrations in breast milk, and temporal patterns could
not be fully evaluated (Table 1; Figures SS, S7, and S8). The
most prominent differences in trends are seen between Europe
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Figure 3. Results of breakpoint analysis for PBDEs in human milk for Asia and Europe for BDE-47, BDE-99, BDE-153, BDE-209, and a-HBCDD.
The shaded area indicates the 95th percent confidence interval. The dotted blue line indicates when regulation was implemented by the Stockholm
Convention (2009: BDE-47, -99, and -153; 2013: HBCDD; 2019: BDE-209). Please note that the Stockholm Convention date does not directly
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Figure 4. Time trends reported in human matrices in literature for (a) BDE-47, (b) BDE-99, (c) BDE-153, (d) BDE-209, and (e) HBCDD. Red
bars indicate an increasing trend, yellow bars indicate no trend or a plateau, and green bars indicate a decreasing trend. Trends are classified based
on the interpretations of the authors of each study. References for all studies can be found in Tables S2 and S3.

and North America for BDE-47, -153, and a-HBCDD. The
temporal trends of BDE-99 and -209 are depicted elsewhere
(Figures S3 and S4).

In Europe, BDE-47 and -99 decreased significantly (p =
0.0001; annual change of —9.3% and —10.1% respectively),
while BDE-153 and -209 had no change over time (Figures 2
and S3). a-HBCDD concentrations increased significantly in
the European population (p < 0.0001; 13.9% per annum)
(Figure 2).

No significant changes (p < 0.05) were observed for any
compound in North America (Figures 2 and S4), although we
note that North American data was generally very sparse,
limiting the ability to distinguish temporal trends. Notably,
North America was the region with the least available a-

HBCDD data points in breastmilk. The western hemisphere
regions were the only regions where BDE-47 and -99 did not
show a decreasing trend (Figures 2 and S4). The temporal
patterns of all other geographical regions are presented in the
Figures SS—S8.

Africa had a decrease in BDE-47 (p = 0.022; —7.8% per
annum). Africa was the only continent where a significant
decrease of a-HBCDD was observed (p < 0.0001; —33.6% per
annum) (Figure S5). A similar pattern to Europe was seen in
Asia. BDE-47 decreased (p = 0.002; —9.7 per annum), while
BDE-153 and BDE-209 both increased, with BDE-209
increasing by 12.8% per annum (p = 0.05). a-HBCDD
concentrations increased at a rate of 7.9% per annum (p =
0.006) (Figure S6).

https://doi.org/10.1021/acs.est.3c02896
Environ. Sci. Technol. 2023, 57, 19106—19124


https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c02896?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c02896?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c02896?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c02896/suppl_file/es3c02896_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c02896?fig=fig4&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c02896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Policy Analysis

In Central and South America and the Caribbean, BDE-153
increased significantly (p = 0.08) with an annual change of
14.8% (Figure S7). Oceania was the only region with a
consistent decrease in all PBDE congeners. BDE-47 and -99
decreased significantly with an annual change of —13.1% and
—15.5%, respectively. BDE-153 decreased at a rate of —6% per
annum (p = 0.054) (Figure S8).

Breakpoint Analysis. Only Asia and Europe had sufficient
data for breakpoint analyses (Figure 3). Breakpoints were
calculated for other regions to identify the timing of
concentration peaks (Figures S9—S12), but the trends are of
limited value due to scarce data and are not discussed in detail.

In Europe, an increase in a-HBCDD of 13.9% per annum
was observed from 1980 to 2010. In 2010, there was a change
(breakpoint) in the temporal trends of a-HBCDD (Figure 3).
The post-2010 decrease is not statistically significant due to
limited data collected since 2010; thus, we cannot determine if
recent concentrations are stable or declining. Although the
breakpoint is not statistically significant, it represents the best
fit for the available data and suggests a shift in exposure post-
2010. In Asia, the a-HBCDD increase was even sharper
(+31.6% per year; p = 0.007 Figure 3) and the breakpoint was
identified earlier (1998), suggesting Asian concentrations
reached a plateau at this point. Like Europe, the modeled
decrease since the breakpoint in Asia is not statistically
significant.

In both Asian and European breast milk data, the breakpoint
in concentrations for BDE-47 and 99 was substantially earlier
than for HBCDDs, close to 1990 for BDE-47 and between
1995 and 2000 for BDE-99. In all cases, concentrations
decreased after the breakpoint for both congeners, but this
postbreakpoint decrease is only significant for BDE-47 and
BDE-99 in Europe (p > 0.0001).

However, there is a clear contrast between the breakpoints
and before/after trends for BDE-153. The breakpoint for BDE-
153 reflects only a change in the rate of increase of BDE-153
(Asia) or plateau (Europe) with no evidence of declining
breast milk levels. Temporal patterns for BDE-209 in Asia were
not significant, indicating no clear time trends. The European
breakpoint for BDE-209 indicated a shift from the significant
increase before 2004 to a current plateau or declining phase.

Comparison with Other Reported Time Trends. For
the PBDEs, clear differences in the time trends by congener
and by study timing are seen. For BDE-47 and -99 (Figure 4),
there is a clear shift from early increasing time trends to more
recent plateaus or decreasing time trends. The same pattern of
early increasing trends and more recent reports of decreasing
time trends is visible for BDE-153 (Figure 4), but the first
decreases are not reported until much more recently. Most
time trends for BDE-153 indicate a plateau. Relatively few
studies report time trend analysis for HBCDD and BDE-209.
For BDE-209 and HBCDD, no discernible time trend can be
derived from literature for human matrices; trends were
variable and not generalizable by region or duration of the time
trend (Figure 4).

Bl DISCUSSION AND IMPLICATIONS

Temporal Patterns. The analysis of published studies
suggests that BDE-47 and -99 have a global decreasing trend.
Decreasing temporal patterns were found in Europe, Asia, and
Oceania. BDE-47 and -99 have human elimination half-lives of
approximately 0.37—3 and 0.77—8 years, respectively.®****>%
In the time since the penta- and octa-PBDEs were included in

the Stockholm Convention in 2004, the population would have
been exposed to lower concentrations of the compounds, and
the existing compounds would have been eliminated from their
bodies. The United States is a signatory to the Stockholm
Convention but has yet to ratify or implement the convention
in national legislation.”*' The North American region was the
only region with a continuous increase in BDE-47 and -99
(Figure 2).

While BDE-153 was also added to the Stockholm
Convention in 2004, it does not share the same decreasing
trends as the lower brominated congeners. All regions
exhibited either a plateau or an increase in BDE-153
concentrations. Beyond the reduction in exposure due to the
introduction of chemical restrictions, congener-specific differ-
ences in metabolism and storage in the body also affect breast
milk trends differently. The human elimination half-life of
BDE-153 is between 3.5 and 11.7 years.*>**>*” When
considering worst case scenario, a half-life of up to 11.7
years would result in a 4-fold reduction (in the absence of
continued exposure) of concentrations measured around 23
years ago, at the time of the implementation of the Stockholm
Convention. Therefore, a full elimination would not be
expected by the time of writing. This, coupled with continued
exposure from existing products, could explain the lack of a
decrease of BDE-153 in breast milk (Figures 2 and 4).

Global restrictions on penta- and octa-BDE technical
mixtures, which are dominated by lower brominated congeners
were generally between 2004 and 2013,”****** whereas deca-
BDE/BDE-209 was restricted only in 2017.”** Conclusions on
BDE-209 are limited because of the lack of data and likely
because the temporal changes are not yet significant enough to
be identified in the generally short-time trend analyses that
have been performed (Figure 4). The short halflife of BDE-
209 in the body (e.g., 15 days in blood***), combined with the
lack of a visible decline in BDE-209 levels in milk, suggests
ongoing consistent BDE-209 exposures, despite recent
restrictions in production, particularly in Asia, where the
temporal trend (Figure S6) and the inverse breakpoint (Figure
3) indicated increasing concentrations in BDE-209 in breast
milk. This agrees with our understanding of the recent high use
of BDE-209 in consumer products and building materials on a
global scale and the lag time between chemical restrictions and
product replacements: emission of BDE-209 from in-use and
waste stocks is estimated to continue until 2050.”

It is concerning how few studies investigated HBCDDs in
residents from the Americas (n = 7), Africa (n = 5), and
Oceania (n = 2) (Table 1). A similar problem was observed
with PBDEs, where Africa (n = 7), Oceania (n = 7), and
Central- and South America (n = 3) had limited studies, while
Asia and Europe had more studies (n = 53 and 61,
respectively) (Table 1). Without the proper information on
the state of contamination in the Americas, particularly the
highly developed and industrialized North America (n = 25
studies on PBDE), it is impossible to determine a global
perspective on the state of human exposure.

Breakpoint analyses are useful tools to determine whether
the accumulation trend of a compound has increased,
plateaued, or decreased over time, highlighting the approx-
imate time when the change occurred. In Asia and Europe, the
broad time trends of FR concentrations in breast milk are
closely tied to the timing of chemical restrictions (Figure 3).
The European trend indicated a breakpoint in ~2010 for a-
HBCDD (Figure 3), which coincides with the increase in
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restrictions in Europe (identified as SVHC in 2009 and listed
in Annex XIV of REACH in 2011)* and provides evidence
that the restrictions impacted HBCDD use and thus exposures
in Europe. After 2010, it is unclear whether a-HBCDDs are in
a plateau phase or whether we begin seeing evidence of a
decrease in Europe and Asia (Figure 3), but it suggests
ongoing human exposure at levels close to the European peak.

It is important to highlight that in Figure 3, none of the
breakpoints observed for Europe or Asia align with the timing
of the Stockholm Convention’s implementation (represented
by the blue dotted line) but rather occurred earlier. This
observation suggests that regional restrictions likely had a more
pronounced impact than global restrictions. However, it should
be acknowledged that the number of studies conducted after
the implementation of the Stockholm Convention is limited
compared to those conducted before its implementation,
making it challenging to precisely assess the Convention’s
effectiveness, especially concerning HBCDD and deca-BDE.

Spatial Patterns. The strong contrast between PBDE
concentrations in North America, particularly the USA, and
most other regions is directly related to differences in
flammability standards and PBDE use. BFRs have been
quantified at higher concentrations in North America than in
Europe in multiple matrices, including human tissue,”* house
dust,”*® and bird eggs.”*” The USA has historically had higher
concentrations of flame retardants in its consumer products
compared with other regions due to stricter flammability
standards.”**7**" The fact that PBDE congeners still show an
increasing time trend in North America (Figure 2) is likely
linked to the large past use of PBDEs, combined with the later
introduction of regulations. The United States has not ratified
the Stockholm Convention and does not have any federal
regulations on FR in existing uses, although 13 states have
internal, state-wide concentration limits on FRs in selected
products.”>" Significant New Use Rules (SNURs), imple-
mented by the United States Environmental Protection Agency
in 2012, aim to ensure that any new uses of specific flame
retardant chemicals undergo a thorough review and approval
process prior to manufacturing or processing. The US EPA
implemented SNURs for Penta and OctaBDE in 2006,
ensuring no new use or manufacturing of these compounds.**”
All manufacture, import, processing and distribution of
decaBDE was under the US TSCA in 2021; however,
significant exemptions remain, e.g, in motor vehicle parts
until 2036.> Large numbers of products containing PBDEs
are likely still in use or circulation, which leads to continuous
exposure and a higher body burden.

Surprisingly, breast milk from the Oceania region was also
significantly higher than most other global regions, save North
America (Figure 1). While most of the world reduced PBDE
use in 2004, whether through regulation voluntary action,
Australia only began implementing regulation on PBDE use,
manufacturing, and import in 2007.”** Even though the import
of PBDEs is banned, no regulation exists for the import of
products that potentially could contain PBDEs, such as
automobile parts, textiles, or electronic products.254

BDE-47 and -99, both primary components of penta-BDE,
displayed similar spatial patterns (Figure 1), attributed to
patterns in the use of technical penta-BDE formula worldwide.

General Observations. A substantial lag-time exists
between cessation of production and cessation of use of FRs
because of the long half-lives of the compounds and the
lifespan of products that they are used in. Significant

reductions in production have a slower effect on use and
emissions because of the large stock of PBDE-containing
materials in use. Abbasi et al.” estimated that the peak in PBDE
use occurred in 2003; however, thousands of tons of PBDEs
will remain in use in consumer products for decades. Plastic,
textile, and electronic products containing FRs are still in use,
to say nothing of buildings’ thermal insulation containing EPS
or XPS, which accounts for more than 97% of the global
HBCDD volume used.”””> The ongoing human exposure to
HBCDDs will be further mediated by HBCDD exposure
through the renovation and demolition of buildings.
Demolition activity can release significant amounts of building
material-associated chemicals and demolition waste, including
EPS or XPS panels, which are estimated to stay in place for
~50 years before renovation takes place.”’ Thus, direct
exposures to HBCDDs in indoor spaces and environmental
release will continue for many decades,”* effectively slowing
the decreasing concentration levels through constant primary
exposures. These can either contribute directly to either
occupational or local population exposures, as well as increase
the burden of secondary environmental exposures through
landfill disposal and subsequent leaching of HBCDDs from the
products.”’

Furthermore, as we move toward a circular economy, there
is significant potential for FRs to be incorporated into new
consumer products made from recycled materials.”>”*** Abbasi
et al.’ estimated that 45000 t of PBDEs may reappear in new
products made from recycled materials, such as plastics, food
contact materials,”””*° and children’s toys.”*"*** Due to the
persistence of FRs, all environmental releases can contribute to
secondary FR contamination in the surrounding air, soil, and
water sources and lead to human exposure via dietary
sources.”*?

The lack of recent biomonitoring studies on PBDEs and
HBCDD:s limits the evaluation of current population exposures
and the impact of regulation on time trends. Of the human
biomonitoring studies (Table 1 and Figure 4), less than 10% of
the records cover the period after 2013, limiting our ability to
evaluate the effectiveness of legislation on the global exposure
trend of FRs. This may be due to the perception that once
chemicals have been regulated, the problem has been dealt
with, and it can be difficult to maintain interest and/or
financial support for chemicals that are perceived to have been
already addressed.'"’

Regulation has a quantifiable effect on the concentrations of
FRs in human breast milk. Regions such as Asia and Europe
where earlier regional regulations, prior to the Stockholm
Convention, have been implemented had the clearest decline
of most of the compounds that were considered in this study.
Australia, where regulations were implemented later still shows
elevated concentrations in human matrices, as does North
America, which had the historically highest FR use globally. On
top of use and regulation, the chemical characteristics of
specific PBDE congeners also affect the response to regulation
and can impact the time needed to evaluate the efficacy of
policy actions. Although PBDEs and HBCDD are regulated
through a ban on production, regulation will have different
outcomes for different individual compounds based on their
dominant use, the volume of historical use, and biological half-
lives. However, it is encouraging to see that existing regulation
and policy, when implemented early and comprehensively, had
a positive impact on the decreasing human body burden of
lower brominated flame retardants.
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ABSTRACT: Polychlorinated biphenyls (PCBs), “famous” as
persistent organic pollutants (POPs), have been managed
nationally since the 1970s and globally under the Stockholm
Convention on POPs since 2004, requiring environmentally sound
management (ESM) of PCBs by 2028. At most, 30% of countries
are on track to achieve ESM by 2028. Globally over 10 million
tonnes of PCB-containing materials remain, mostly in countries
lacking the ability to manage PCB waste. Canada (Ontario) and
Czechia, both parties to the Stockholm Convention, are close to
achieving the 2028 goal, having reduced their stocks of pure PCBs ke CZ E
by 99% in the past 10 years. In contrast, the USA, not a party to J

the Stockholm Convention, continues to have a substantial but

poorly inventoried stock of PCBs and only ~3% decrease in mass

of PCBs since 2006. PCB management, which depends on Stockholm Convention support and national compliance, portends major
challenges for POP management. The failure to manage global PCB stocks >30 years after the end of production highlights the
urgent need to prioritize reducing production and use of newer, more widely distributed POPs such as chlorinated paraffins and per-
and polyfluorinated alkyl substances, as these management challenges are unlikely to be resolved in the coming decades.

Tonnes of pure PCBs

00\

2000 2005 2010 2015 2020 2025

KEYWORDS: polychlorinated biphenyls, Stockholm Convention, chemicals management, persistent organic pollutants, PCB stocks,
environmentally sound management, Canada, Czechia, USA

H INTRODUCTION PCBs, through dilution for use and subsequent poor
management, expanded to 17 million tonnes of PCB-

Polychlorinated biphenyls (PCBs) are the epitome of a
contaminated materials and waste (Figure 1), with an

persistent organic pollutant (POP) because of their persis- X i i
tence, bioaccumulative potential, and toxicity. Owing to their eStlm‘f‘fd 20—35% of PCBs already released in the environ-
environmental mobility and persistence, they are distributed ment.* Monsanto, in the USA, produced more than 50% of
globally, from the high Arctic and Antarctic to the Mariana global PCBs and recognized the toxicity of PCBs shortly after

Trench in the deep Pacific Ocean.' PCBs pose risks to the start of large-scale commercial production in the 1930s."?
ecosystems as they potently bioaccumulate through the food According to Monsanto’s documentation, the company argued
web to reach levels of concern among top trophic level animals. that PCBs were of minimal risk in closed systems such as
In utero exposures are associated with neurodevelopmental capacitors and transformers, but the company intended to use
toxicity, manifesting as learmng, behavioral, or intellectual PCBs in a very wide array of products that would result in
impairment in children.””® PCB exposures are also associated environmental release and human exposure.'” Clear evidence
with impaired immunological function, auditory deficits, and of their widespread environmental distribution came in the
central nervous system disorders such as Parkinson-like 1960s and 1970s, first in Baltic Sea biota,> along with
symptoms.” indications of their toxicity."*

PCBs were introduced for use in dielectric fluids to reduce Global production of PCBs decreased with the introduction

the risk of explosion in capacitors and transformers and saw
widespread use as plasticizers and flame retardants in products
such as building materials and paints.'® Breivik et al.''
estimated that more than 1.3 million tonnes of pure PCBs
were manufactured between 1930 and 1993 in at least 10 Revised: ~ May 4, 2022
countries, primarily in the USA, followed by West Germany, Accepted:  May 4, 2022
the USSR, and France (Figure S1). However, PCBs were Published: June 1, 2022
widely exported from manufacturing countries, resulting in use

in at least 114 countries." The ~1.3 million tonnes of pure

of restrictions in the 1970s in Western countries (Figures 1 and
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Figure 1. Timeline of major policy actions on PCBs in the USA, Canada, and Czechia and in the Stockholm Convention. Rate of PCB production
and associated increase in stocks is estimated based on the study by Breivik et al.'" The Stockholm Convention estimates of remaining stocks are
obtained from refs 17—181920. The total stock of PCB-containing materials and waste (up to 20 million t) reflects how pure PCBs are diluted to
create this mass and how mismanagement spreads pure PCBs to create a larger contaminated mass. The variation in the estimated stock over
1994—2016 reflects how reported global inventories changed over time due to uncertainties in reported PCB stocks. Additional details on the

timeline of policies impacting PCBs are given in Figure S2.

S2). These were followed by restrictions implemented through
international agreements, notably the Stockholm Convention
on POPs, which entered into force in 2004 and currently has
185 parties (184 countries plus the European Union,
chm.pops.int). The Stockholm Convention bans the produc-
tion of PCBs and aims to phase out in-use PCBs by 2025 and
ensure environmentally sound management (ESM) of
materials with >0.005% (50 mg/kg) PCB content by 2028.
ESM largely constitutes chemical destruction by high-temper-
ature combustion methods where the PCB content of the
waste is destroyed, with exceptions for low PCB content wastes
with large volumes, in which case specially engineered landfills
or permanent storage in underground mines/rock formations
can serve as reasonable substitutes (Table S1)."> Each party
implements the Stockholm Convention through the enactment
of binding legislation. Parties have devoted considerable efforts
over decades to eliminating PCB stocks and controlling further
primary and major secondary releases. Much has been
accomplished. However, as of 2016, UNEP identified that
only 17% of PCB-containing materials have been eliminated, at
the rate of about 200,000 t/y since 2000. Addressing the
remaining 83% would require the elimination of ~1 million
tonnes of PCB-containing oils and contaminated equipment
per year to reach the 2028 target.'’

Today, despite restrictions, primary PCB emissions continue
from on-going use in products and materials: closed
applications (e.g., transformers, capacitors, electric motors,
and light ballasts), partially open applications (e.g., hydraulic
fluid, heat transfer fluid, switches, electrical cables, and vacuum
pumps), and open applications (e.g, paints, sealants, inks,
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lubricants, flame retardants, insulation, dyes, and pesticides)
(see Table S2).>"** This diversity of uses, combined with their
poor documentation, creates a global challenge for managing
primary PCB sources.

Although the greatest mass of PCB use has been in closed
applications, open applications of PCBs have received
increasing attention, particularly in relation to sensitive indoor
environments such as schools.”>™> Open applications have
been shown to result in direct exposure, particularly in schools,
and secondary exposure from emissions to the surrounding
environment; open applications were estimated to be the
primary contributors to global emissions up to 1980.%
Building materials have received the most attention, notably
joint sealants and paints, but >15 types of open applications
have been identified by UNEP,”® and previously undocu-
mented open source uses (e.g, floor waxes,”’ book bindingszs)
continue to be identified. Open applications were the first to
receive international regulatory attention through OECD
restriction on open applications in 1973.°° While reports
frequently state that approximately 21—-26% of PCBs were
used in open applications,”®*” this is a rough global average,
and the type and amount of open PCB use varied substantially
by region: in Japan, the majority of open use was in carbonless
copy paper, while in Western Europe, it was in building
sealants.”>’ Open applications of PCBs present a unique
challenge as they are not typically included in national
inventories and are frequently not even recognized as PCB
wastes.”® Countries that have estimated stocks of PCBs in
open applications (e.g., Germany, Finland, Norway, Sweden,
and Switzerland) have identified amounts from hundreds to
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thousands of tonnes.”® For example, Germany had an
estimated 12,000 t remaining in open applications as of
2013, contributing 7—12 t of PCBs to the environment
annually.”!

Global PCB contamination has many facets, from the legacy
use of PCBs in industrial and consumer products, to
unintentional production and releases from industries and
combustion’>** and to emissions of unintentionally produced
nonlegacy PCB congeners from modern materials such as
paints and cabinetry.”**> Here, we focus on the challenge of
managing primary legacy PCB stocks through a review and
analysis of current PCB management status globally. We assess
progress toward ESM of PCBs through a two-part analysis: (1)
challenges of PCB management on a global scale and (2) a
detailed case study comparison of the current status of PCB
management in three economically developed countries
(Canada, Czechia, and USA) with differing histories of
Stockholm Convention participation, PCB production and
use, and management capabilities.

The motivation for this analysis is two-fold. First, it is critical
to understand the scale of the future threat posed by PCBs to
human and ecosystem health. After countries enacted controls
in the 1970s and early 1980s, concentrations in air, water, and
relatively short-lived biota dropped rapidly.*° However,
decreases have slowed in recent years.”””® Today, 40 years
after major production ceased, PCBs may cause the demise of
over 50% of the world’s killer whale populations.”” As a
neurotoxicant, PCBs contribute to the significant global
burden of disease attributable to widespread human exposure
to hazardous pollutants.*” Second, the analysis of successes and
failures in managing PCBs provides a clear cautionary lesson
on the long-term impacts of producing and widely using
persistent compounds and the inability of even wealthy
countries to manage and eliminate their on-going use.

B METHODS

Global PCB Management. Historical PCB consumption
was adapted from Breivik et al."" to reflect the total PCB mass
used (see Text S1). The status of PCB use and management of
all UN-registered countries was classified based on the most
recent information (Table S3). In most cases, this information
was the most recent Stockholm Convention status document
(National Implementation Plan or Conference of the Parties
update) and the responses to a 2018 questionnaire given to
Stockholm Convention parties on PCB management. Where
available, other reports were also used, particularly Global
Environment Facility (GEF) project reports (see references in
Table S3). Based on this information, we placed countries into
eight categories according to their PCB management, ranging
from no existing PCB management plan or inventory, to full
ESM. We also included countries that are not parties to the
Stockholm Convention.

Case Study: Canada. Data from Ontario, containing
nearly 40% of the Canadian population,”' were used as an
indicator of Canadian performance. Details of the Ontario
PCB inventory are provided in the Supporting Information
(Text S2). Briefly, the PCB stock in Ontario was estimated by
combining data from the Canadian federal “ePCB” database
and a provincial-level PCB Waste database maintained by the
Ontario Ministry of the Environment, Conservation and Parks.
The federal ePCB reporting system lists locations of PCB
holdings in-use and in-storage with concentrations >50 mg/kg.
Data as of December 31, 2016 for closed sources were used.
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The Ontario database separately lists PCB waste storage sites
in Ontario; data used were as of 2013. Combined, the
databases reported a total of 270 unique sites with PCBs in
use, stored, or classified as wastes not yet subject to ESM.

Any values given in units of volume were converted to mass
based on assumptions of the density of the PCB-containing
material. The masses of PCB-containing materials were then
converted to estimates of pure PCB mass assuming average
concentrations per category of application.*” Askarel fluid was
assumed to have 600,000 mg/kg PCBs (range 400,000—
800,000 mg/ k%) and mineral oil 250 mg/kg PCBs (range S0—
500 mg/l<g).4"44 Concentrations in waste categories were
estimated based on their classification as either low- or high-
level waste. Assumptions are detailed in Table S4.

We also compared these 2013—2016 data with an inventory
of closed sources from 2006 before the enactment of revised
Canadian Federal PCB regulations in 2008. This comparison
was restricted to the Toronto (largest city in Canada) area
because of data availability.**

Case Study: Czechia. Data for Czechia were compiled
from the current inventory of PCB-containing products and
materials, maintained by the CENIA—the Czech Environ-
mental Information Agency. Since the itemized database is not
publicly available, our inventory relied on the totals of
individual application categories, which have been reported
to the Stockholm Convention® and the European Union.*

Where available, exact reported masses of PCB-contami-
nated material were used, and when missing, the mass was
estimated based on the number of items and the median mass
of PCB-containing fluid per item in the category (Table SS).

The masses of PCB-containing fluids were converted to
estimates of pure PCB mass using assumptions specific to
Czech/EU regulations (Table SS). Czechia complies with the
European Council Directive 96/59/EC, which required
elimination of all materials containing >500 mg/kg PCBs by
2010; thus, all remaining large PCB equipment (>5 dm?)
should be <500 ppm PCBs. However, there is some ambiguity
in the reported information; thus, we have used a 10,000 ppm
upper threshold, based on Czech reporting to UNEP,” to
account for a worst-case scenario of instances of non-
compliance.””

To evaluate progress since the ratification of the Stockholm
Convention, we compared the most recent inventory with
totals from the initial Czech National Implementation Plan
reflecting 2002—2004."° As the original inventory preceded EU
legislation, we assumed higher concentrations of PCBs in
materials using the values of 20,000 mg/kg (range 10,000—
30,000 mg/kg)."’

Case Study: USA. To estimate the current stock of PCBs
in use and waste in USA, we utilized publicly available
information from the US Environmental Protection Agency
(US EPA), specifically the PCB transformer registration
database® (Table S6, as of Jan 2020) and the PCB Cleanup
and Disposal Program® (up to 2020). The US EPA tracks
transformers and regulated PCB waste pursuant to regulations
under the Toxic Substances Control Act (TSCA). Owners of
PCB transformers must register details on transformer
location, ownership, and mass in the PCB transformer
registration database. PCB transformers that are removed
from use may be optionally deregistered from the database. We
extracted information on the number, location, and mass of
transformers to estimate the stock of PCBs currently held in in-
use and stored transformers. Incomplete records were assigned
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Figure 2. Global PCB use and management. (A) Total PCB consumption by country throughout the period 1930—2000 based on data from
Breivik et al.'' extrapolated to total PCB mass consumption according to Text S1. Figure S6 presents the same data presented as per capita
consumption. (B) Current status of PCB management according to the latest reported status for each country, compiled from Stockholm
Convention reporting and other sources. Sources used are given in Table S3. NIP indicates Stockholm Convention National Implementation Plan.
A color-blind accessible version of this figure can be found in Figure SS.

the median value of the complete records (median two
transformers per site; median mass 782 kg/transformer). A
transformer was considered to be 30% fluid by mass;”" this
factor was used to convert total transformer masses to masses
of PCB-containing fluids. Fluid masses were converted to
estimates of pure PCB mass using assumptions about the
concentrations in a typical transformer, as for the Canadian
inventory. We assumed that before Jan 1, 2000, all trans-
formers reported were askarel transformers, and after that date,
all were mineral oil, based on the assumption that transformer
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owners would be aware of high-level PCB content and report
in compliance with the TSCA regulations. However, PCB-
contaminated mineral oil may be less thoroughly documented,
leading to delayed reporting.”” Average concentrations used for
askarel transformers were 600,000 mg/kg PCBs (range
400,000—800,000 mg/kg) and those for mineral oil trans-
formers were 1000 mg/kg PCBs (range 500—5000 mg/
kg).**»** To evaluate the completeness of the transformer
registration database, we compared the total number and mass
of transformers reported to the PCB Cleanup and Disposal

https://doi.org/10.1021/acs.est.2c01204
Environ. Sci. Technol. 2022, 56, 9029—9040


https://pubs.acs.org/doi/10.1021/acs.est.2c01204?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01204?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01204?fig=fig2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01204/suppl_file/es2c01204_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01204/suppl_file/es2c01204_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01204/suppl_file/es2c01204_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c01204/suppl_file/es2c01204_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01204?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Program with the total number of transformers in the
registration database and the mass of deregistered transformers
from 1998 to 2018.

To evaluate changes in the USA stock over time, we
compared the current remaining stock of transformers to
records of PCB transformer deregistrations to calculate the
number of transformers and mass of PCBs that would have
remained in use/stored in 2006.

Uncertainty Analyses. Monte Carlo analysis was
performed for the Canadian PCB databases, which identified
that concentration levels (i.e, mg/kg PCBs per equipment/
waste category), particularly the concentration selected for the
high-level equipment/wastes, had the greatest impact on the
estimate of the total stock (Text S3, Figures S3, S4). Density
and other assumptions made to complete missing data had
negligible impact. Therefore, we addressed the uncertainties in
the conversion of database entries to pure PCB masses through
the inclusion of upper and lower concentration thresholds for
individual PCB equipment and waste categories according to
the regulations and database thresholds for each country, as
described above.

B RESULTS
Global Management of PCB Stocks. Global use of PCBs

varies widely, and the current PCB management capacities of
countries also vary widely (Figure 2B, Table S3). One country
(Democratic People’s Republic of Korea) continues to
produce PCBs."” 185 parties (184 countries plus the European
Union) have ratified the Stockholm Convention, while 13
countries have not, notably the USA, Italy, Malaysia, Haiti,
Israel, and Turkmenistan; all other nonratifying countries have
<1 million population or are recently established (e.g., South
Sudan). We note that while Italy has not ratified the
Stockholm Convention, the European Union, of which Italy
is a member, is a party to the Convention, and the EU has
stricter regulations on PCB management than the Stockholm
Convention. Of the 184 ratifying parties, 10 have not
submitted any implementation plan. Greece and Malta, as
EU member states, should also follow EU PCB management
regulations, despite not yet submitting documentation to the
Stockholm Convention.

For the 174 Parties that have submitted reports, our analysis
highlights that 72 national PCB inventories (42%) are partial
or preliminary. Many inventories are limited to transformers
and/or only to the public electricity sector, which may capture
only half of the uses of PCBs (considering 48% of the PCBs
produced were used in transformers””). An additional 23
countries (13%) reported complete PCB inventories but no
capacity to achieve ESM, while 11 countries had inventories
and capacity to manage PCBs but had made no significant
progress toward ESM. The number of countries achieving or
progressing toward ESM was small; 34 countries (18%) are
progressing toward ESM through removal from use and
destruction of PCB materials. Only 23 countries (13%) have
achieved ESM of PCBs. With three exceptions (Nepal, Kenya,
and Micronesia), all of the 23 countries that have achieved
ESM are classified as “very high” in the UNDP Human
Development Index, or “high income” under by the World
Bank (Table S3). Only three countries classified as “low
development”/“low income” are currently making substantial
progress toward ESM of PCBs: Benin, Rwanda, and Uganda.

National reporting to the Stockholm Convention contains a
wealth of information about PCB management, but the quality
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and quantity of information provided by individual countries
vary widely. A questionnaire from the Convention was
distributed to 182 parties to evaluate progress toward ESM
of PCBs. Fewer than 60 parties provided responses.” Based on
these responses and additional Stockholm Convention
information sources, estimates of current PCB stocks could
be determined for 52 countries (see references in Table S3).
Many countries lacked recent information, with some countries
not submitting documentation since 2004. Therefore, our
analysis is uncertain for two reasons. First, we may be
presenting a worst-case scenario since countries may have
made unreported progress toward PCB elimination. Second,
and conversely, many countries reported incomplete invento-
ries (e.g., only inventories of transformers owned by a national
electricity provider), and thus most recent reports under-
record true stocks.

Many countries are challenged by weak institutions,
corruption, and mismanagement, making tracking PCB stocks
and limiting their misuse extremely difficult. There are multiple
reports of transformers being improperly recycled. For
example, Sri Lanka identified that PCB-containing trans-
formers were transferred to informal recyclers and that spilled
PCB-containing oils were cleaned up with sawdust of which
some were disposed of through burning.”* Nauru reported that
a transformer confirmed to contain PCBs was slated to be
shipped to Australia but was instead collected by a scrap metal
recycling company with an undetermined fate.”> In other
instances, transformer owners were reported to have actively
drained and disposed of PCB contents to avoid responsibility
for PCB materials. For example, in Malawi, numerous pieces of
equipment suspected to contain PCBs had their contents
poured directly onto the ground before they could be tested.*®
The Dominican Republic reported that owners of transformer
shops, to avoid PCB disposal regulations, diluted the PCB
concentration in the fluids by continually removing them and
adding more mineral oils and sold the removed PCB oils to
illegal foundries.”” Ghana reported the use of PCB oils to
create beauty creams and to lubricate domestic sewing
machines,*® while in Montenegro, factory workers were
reported to have used PCB oils for handwashing and to heat
homes.””

Several initiatives, such as those funded by the Global
Environment Fund (GEF) and implemented by UNEP, have
made progress in addressing some of the challenges low-
income countries face in managing PCBs. For example, a
project, harmonizing efforts in Southern Africa to centralize
dismantling, draining, and accumulation of PCB oils/equip-
ment for disposal,”’ was among more than 40 GEF-funded
projects on ESM of PCBs. Together, these projects have
eliminated 23,000 tonnes of PCBs.'” However, even these
specific projects can be hindered by unreliable national reports,
delays in laboratory analysis of suspected PCB materials, and,
most crucially, incomplete inventories. The technological and
financial capacities required to eliminate PCBs are not available
in many regions. GEF-funded projects on PCBs have received
~$450 million USD to support the elimination of 88,000
tonnes of PCB-containing materials and waste (23,000 tonnes
eliminated and 65,000 tonnes planned), averaging USD 5,000
per tonne of PCB waste eliminated. It is noted that these
project costs include items not directly related to elimination
(i.e., capacity building and education).'” Currently, the cost
burden of managing PCBs lies with national governments or
international agencies (e.g., national environment agencies,
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Figure 3. Inventories of PCBs for USA, Czechia, and Ontario, Canada. (A—C) Estimated stocks as of mid 2010s by (A) number of items, (B) bulk
mass of PCB-containing materials, and (C) pure PCBs, with error bars indicating the uncertainty of the estimates of mass. (D—F) Change over
time in PCB-contaminated items, bulk mass of PCBs, and pure PCBs. (G,H) Distribution of current stocks of pure PCBs in Ontario and Czechia
according to item categories. USA is not shown because only transformers are included in the inventory.

UNEP, and GEF). Producer financial responsibility to date has
only been in the form of legal settlements. Funding PCB
elimination is clearly a problem, with the estimated need to
eliminate 1 million tonnes of PCB-containing materials and
waste per year to achieve Stockholm Convention compliance,
mostly in countries with minimal financial and/or technical
capacity. Yet despite the costs of elimination, there is also a
clear public health cost of inaction: toxic chemicals, including
PCBs, are neurotoxicants contributing to the “pandemic of
developmental neurotoxicity,” placing a significant burden on
societal resources.”’

At most, 30% of countries are on track to achieve ESM by
2028, and the lack of capacities for PCB management is a
barrier to achieving this goal. With the specific examples of
Canada, Czechia, and the USA, we demonstrate successes and
barriers to ESM even in high-income/highly developed
countries.
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Case Studies. Inventory Results: Canada. Based on the
combined provincial and federal databases as of 2013 and
2016, we identified a total of 12,200 tonnes of material in
Ontario with PCB content >50 mg/kg. These materials were
estimated to contain 32 t of pure PCBs (Figure 3, Table S11)
with a range of 21—44 t. The PCB sites were widely distributed
across heavily populated Southern Ontario and within or close
to urban areas. The stock of PCB materials in Ontario was
dominated by PCB-contaminated soil/gravel held at two sites,
making up 97% of the bulk mass of PCB materials but <10% of
the pure PCBs, which was largely held in transformers (77%)
and capacitors (12%) (Figure 3G).

According to a 2006 PCB inventory,”” Toronto had 455
sites containing 850 t of PCB-containing equipment and
materials, equivalent to 424 t (range 282—565 t) of pure PCBs.
A large proportion of this was located in Toronto’s central
business district in electrical transformers in large office
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towers.”” In 2016, Toronto had only 7 sites holding 31
separate PCB items, all located outside of the city center, of
which 3 sites had PCBs remaining in use (all others were
stored for disposal), constituting only ~40 g of pure PCBs.
The remaining four sites stored 2.9 t of bulk PCB material,
equivalent to 0.8 t (range 0.6—1.0 t) of pure PCBs. Thus,
>99% of the 2006 stock of PCBs in Toronto was removed in
the 10 years between inventories and after 2008 legislation
mandating ESM, clearly showing progress toward elimination
of PCB stocks in Toronto (Figure 3F). This agrees with
Canada’s reporting to the Stockholm Convention®' which
states that 0.02% of the 2008 PCB stock remains today.

Inventory Results: Czechia. Based on the most recent
Czech records, we estimated a total stock of 6092 tonnes of
material with PCB content >50 mg/kg in 2016. This bulk mass
was estimated to contain 2.84 t (0.30—62 t) of pure PCBs
(Table S11). Most of the mass of PCB materials (74% of bulk
material and 79% of pure PCBs) was in transformers held by a
large electricity production and distribution company respon-
sible for more than 14,000 pieces of PCB-containing materials,
including close to 10,000 transformers (Figure 3A). However,
despite the large number of transformers, Czechia has
prioritized the removal of equipment containing high
concentrations of PCBs in compliance with European Union
and Stockholm Convention regulations. This has resulted in a
relatively low level of pure PCBs (~2 tonnes) in these ~10,000
transformers.

In 2005, 25,000 items contained ~3000 t of PCB-
contaminated fluid/materials,*® equivalent to an estimated
460 tonnes of pure PCBs. An inventory in the intervening
years (from 2009) reported 9193 t of known PCB materials
and 3228 t of possible PCB materials.”> Later inventories
(2009, 2016) were more comprehensive, which resulted in a
higher reported bulk mass of PCBs (Figure 3E). The
prioritized removal of high concentration items has led to
the large decrease of pure PCBs since the 2005 inventory was
compiled (Figure 3F).*

Inventory Results: USA. The USA inventory was based only
on the US EPA transformer registration database™ (Table S6)
and, consequently, was incomplete in two respects. First, it
contained only records of transformers—no inventories exist
in the USA for any other PCB-containing materials. Data from
the PCB Cleanup and Disposal program’ (Tables $7 and S8)
indicate the disposal of millions of kilograms of large low- and
high-voltage capacitors and bulk waste from 1998 to 2018,
none of which has been included in any inventory. Second, the
transformer registration database likely does not include all
PCB transformers. From 1998 to 2018, the registration
database listed 20,130 total transformers, but the PCB disposal
program data indicated that over 180,000 transformers were
disposed of over the same period, strongly suggesting that the
registration database did not, and likely still does not, include
all PCB-containing transformers. Therefore, our stock
estimates in Table S11 are a clear underestimate of closed-
source PCBs in USA.

As of 2020, the USA transformer database contained records
of 11,577 transformers, estimated to contain 13,755 tonnes of
PCB material with 776 (517—1040) tonnes of pure PCBs. To
provide a temporal comparison similar to Canada and Czechia,
the database was re-evaluated considering the stock of
transformers existing in 2006. In 2006, the USA had 14,457
transformers containing 47,500 tonnes of PCB material and
770 tonnes of pure PCBs. This suggests a 20% reduction in the
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number of transformers and a 71% reduction in the mass of
bulk PCB material, but only a 3% reduction in pure PCBs over
~18§ years (Figure 3D-F).

B DISCUSSION

Canada. PCBs were never manufactured in Canada, but an
estimated 40,000 t of PCBs were imported up to 1980,
leading to the second-highest per capita use in the world (1.2
kg/person), behind only the USA (Figure SS). New uses of
PCBs were banned in 1977. Canada signed the Stockholm
Convention in 2001 and enacted legislation to comply with the
Convention in 2008. The purpose of the 2008 Canadian PCB
regulations was to accelerate the elimination of PCBs in
concentrations greater than 50 mg/kg by 2025 by stipulating
end-of-use deadlines, especially for PCBs near sensitive sites
(schools, daycares, hospitals, etc.).“

Of the three profiled countries, Canada has most successfully
managed PCBs. The mass of pure PCBs in Toronto, Canada’s
largest city, decreased by 3 orders of magnitude within 10
years, indicating that regulations were successful in phasing out
PCBs in Toronto. PCB material has been removed from all
transformers in large skyscrapers built in the 1960s and 1970s
in the downtown core and from sensitive sites such as
schools.”” The enforcement of PCB regulations in Canada
includes compliance strategies and environmental officers that
inspect PCB facilities. For example, in 2015, inspections were
conducted at 44 companies that were set to remove and
destroy their PCB equipment, finding 89% compliance.”*
Some inventory data indicated a lack of compliance in a small
number of cases; three entries in Ontario databases reported
concentrations over 500 mg/kg for equipment that should
have been removed by 2009.

Canada’s database has only limited inclusion of open sources
of PCBs, although these were used in Ontario, for example, as
joint sealants in buildings constructed from the 1950s to
1970s.°° Past inventories estimated that the contributions of
PCB-containing building sealants were low relative to the total
amount of PCBs held in transformers,**®> but with the
prioritized removal of closed PCB equipment and little
attention given to open sources, their relative importance
may now be greater. In countries that consider open sources in
their PCB inventories, they typically account for more than a
third of the remaining PCB bulk mass, for example, 37% in
Germany®® and 39% in Switzerland.®’

Committing to national and international PCB agreements
has helped expedite Canada’s progress on phasing out PCBs.
The 2008 regulation was proposed to meet the targets and
commitments of the Stockholm Convention.’® If the current
trend continues across Canada, we suspect that Canada will be
well on track to meet the 2025 target set by the Stockholm
Convention.

Czechia. At the time of PCB production, Czechia was
Czechoslovakia, and PCBs were produced by the Chemko
Strazske factory in the east of the country (now Slovakia).
Chemko produced 21,481 tonnes of PCBs from 1959 to 1984,
of which 11,613 tonnes were used in Czechoslovakia, and the
rest was exported to other Eastern Bloc countries, primarily
East Germany."” Per capita use in Czechoslovakia was 580 g/
person, the 20th highest in the world (Figure $6). It is
estimated that 7000—8500 t of pure PCBs were used in the
area that is now Czechia."® Most PCB use was by three state
companies manufacturing PCB-containing paints and coatings,
electrical capacitors, and electrical equipment for transport and
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industry.*® These materials were then distributed to over 200
other companies/state agencies. PCB manufacturing ceased in
1984, and use restrictions were introduced in stages over the
1990s as Czechia moved toward compliance with EU
regulations with the goal of eventually entering the EU.
These late restrictions are the reason why the breast milk of
Czech and Slovak mothers contains, on average, the highest
concentration of PCBs among industrialized countries.””’

The Czech PCB stockpile and waste management plan
covering 2003 to 2013 dictates that all PCB materials
exceeding 50 ppm be managed according to ESM provisions
of the Stockholm Convention. Czechia, as a member of the
EU, additionally follows the EU PCB regulations, which are
stricter than those of the Stockholm Convention for large
equipment, requiring that equipment with PCB volumes >$
dm® was decontaminated or disposed of by 2010.

As with Canada, open sources were not considered in the
Czech inventory. PCB-containing building sealants had limited
use in Czechia and other former Eastern Bloc countries, unlike
in Western Europe and North America, due to their higher
cost. The major open use of PCBs was in paints, particularly on
bridges and in military applications, constituting approximately
21% of total use.*>*” PCBs released from paints have caused
significant environmental contamination, including of Elbe
River sediments with up to 6 mg/kg PCBs due to renovations
to a railway bridge that had PCB-containing paint.”’

The biggest challenge in Czechia is not the documented
inventory of PCBs but rather the numerous abandoned
industrial/contaminated sites. This number is larger than
typical in Western countries due to the country’s transition
from a communist economy in the early 1990s, dissolution of
state-owned companies, and subsequent bankruptcies and
abandonment of these sites. Numerous facilities now remain
without responsible ownership and contain abandoned
industrial infrastructure, with possible PCB contamination, as
well as contaminated soils and other materials. The database of
contaminated sites maintained by the Czech Ministry of
Environment listed 387 sites with PCB contamination as of
2016; however, 88% remain only as suspected contamination,
still lacking a proper site survey."

Since the early 2000s, the Czech PCB inventory appears to
have grown because of the “discovery” of many of these sites
and reporting from companies that had not initially disclosed
their stocks. The 2002—2005 database reported 25,000
contaminated or potentially contaminated items, with ~3000
t of bulk PCB fluid/materials.*® By 2016, there were slightly
fewer PCB-containing items (21,300) but a much higher bulk
mass of PCBs (6093 t) compared to 2005. This discrepancy
arose because of the inclusion of small PCB items that were
not included in the original inventory. Most importantly, the
mass of pure PCBs has dramatically decreased: only 1% (0.1—
17%) of the 2005 stock of pure PCBs was estimated to remain
in 2016 (Figure 3). This large decrease in pure PCBs is
attributed to progress toward compliance with EU regulations,
with priority given to ESM of high-level and large-volume PCB
equipment.

Czechia has sufficient capacity for ESM of PCBs (e.g,
annual hazardous/POP waste incineration capacity of >21,000
t*°); however, the country requires action from both private
entities and the state, in case of the abandoned stock, and a
significant effort to remove PCBs from use if it is to achieve
ESM by 2028.
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USA. The USA was the world’s largest producer and
consumer of PCB products with an estimated use of 500,000
tonnes of PCBs, or 1.9 kg per capita, the highest in the world
(Figures 2A and SS). The USA passed regulations in 1979
under the TSCA to prohibit the manufacture, processing,
distribution in commerce, and new use of PCBs. However, the
USA has not ratified the Stockholm Convention and does not
have national legislation that sets deadlines for PCB
elimination.”” This lack of national legislation is also reflected
in its fragmented and incomplete PCB data. While it is clear
from the PCB Cleanup and Disposal program™ that the USA
has removed a large stock of PCBs from use, the incomplete
current inventories prohibit the evaluation of the remaining
burden of PCBs in the USA. Our analysis strongly suggested
that the transformer registration database is missing a
substantial number of transformers, and no inventory exists
for other PCB materials (capacitors, ballasts, other electrical
equipment, and contaminated soil). In Canada, these materials
accounted for ~25% of the total mass of pure PCBs and 99%
of the mass of bulk PCB materials; we expect similar
proportions in the USA. The US transformer database requires
responsible parties to self-report information, with limited
enforcement, and the concentration of PCBs is not reported.
The incomplete or erroneous information greatly limits the
accuracy of the inventory.

Our assessment of the US records as incomplete contrasts
with a recent UNEP report suggesting that US PCB records
are more comprehensive than those for other countries.'”
While this may be the case in comparison to developing
countries, we argue that the fragmented and inconsistent
nature of reporting, limited mainly to transformers, coupled
with the highest global PCB manufacturing and use, presents
the USA as a worst-case scenario for PCB management in
countries with a capacity to do so.

Even based on incomplete information, the stock of PCBs in
the USA remains large compared to Canada and Czechia.
While the USA has removed 100,000 t of PCBs from use, the
impact of this removal on total PCB stocks is highly uncertain
because of poor record-keeping. Moreover, the USA did not
show a significant decrease in the mass of pure PCBs between
2005 and 2020 as was seen for Canada and Czechia (Figure
3F), which have prioritized removal of high-level PCB
materials (e.g., askarel transformers). Further, PCBs removed
from use in the USA are legally allowed to be disposed of by
methods not considered ESM by the Stockholm Convention,
such as landfilling. This is a major concern as landfills may act
as secondary PCB sources by contaminating surrounding
ecosystems with resulting ongoing human and environmental
exposures.”* The environmental and societal burden due to the
ongoing use and non-ESM disposal of PCBs in the USA is a
clear concern, given the country’s history as the world’s largest
producer and user of PCBs.

The per capita mass of pure PCBs in the USA inventory
(2.40 g/person for 2020) is comparable to Ontario, Canada
(2.41 g/person for 2013—2016), while Czechia is lower, at
0.27 g/person for 2016. However, of all three countries,
Canada has the most complete inventory, which includes large
masses of contaminated soil and gravel that are not included in
inventories in either Czechia or USA. The per capita stock in
the USA would be significantly higher if the inventory included
the additional categories of capacitors, other electrical
equipment, and contaminated waste materials that have been
significant portions of the Canadian stock (Figure 3G). It is
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estimated that USA has at least 26 million cubic meters of soils
contaminated with PCBs'” and 350 “Superfund” sites with
reported PCB contamination.

B IMPLICATIONS AND LESSONS LEARNED FROM

PCB FAILURES

In 2016, UNEP completed an assessment of global efforts to
eliminate PCBs, with an update in 2019.">° The report
highlighted similar challenges as identified here: incomplete
inventories of PCBs in many regions and large uncertainties in
current stocks and extent of ESM. The report identified that
“the majority of countries (with some notable exceptions) are
currently not on track to achieve the ESM of PCBs by 2028.”
Our analysis of the progress, available infrastructure, and the
challenges within individual countries in managing PCBs
confirm the implausibility of achieving this goal without a rapid
change in actions. UNEP also reported that the PCBs
eliminated so far were likely “low-hanging fruit,” and further
elimination will present more logistical and technical problems,
challenging our ability to achieve the rates of elimination
needed to reach Stockholm Convention goals.'”

One substantial challenge is PCBs remaining in open
applications, which are poorly documented even in countries
that report ESM. To date, Sweden has given the most
comprehensive attention to open applications through a
program of identification and decontamination of buildings
with PCBs in building materials.”* Also, a small number of
other countries have developed general estimates and
addressed contaminated buildings on a case-by-case basis.
The difficulty in managing open applications of PCBs is the
lack of documentation of use combined with their importance
to human exposure”’” as well as the lack of coherent
strategies to manage PCB-containing/PCB-contaminated
building materials without increasing emissions of PCBs.

In addition to the challenge of ESM for the remaining global
stock of PCBs, we are faced with the challenge that some large
fraction of PCBs is no longer “manageable.” These
“unmanageable” stocks have been released to the environment,
landfilled without documentation, or, in arguably worst cases,
are “lost” due to a lack of labelling and documentation and
have entered the commercial sector as oils without identified
PCB content. The longer the use and improper storage of
PCBs persists, the greater the potential for environmental
releases and human exposures, particularly considering the
aging infrastructure that houses PCBs.

Strong regulation combined with financial and technological
capacity and enforcement, as demonstrated in Canada, can
successfully reduce stocks of PCBs and advance ESM. Many
countries face substantial challenges due to historical structures
(e.g., as in Czechia), and even with sufficient financial and
technological capacity, their progress toward achieving the
Stockholm Convention deadlines is hindered by legacies of
poor record keeping, environmental practices, and site
ownership. However, most troubling is the prevalent lack of
capacity to manage PCB stocks. The Stockholm Convention
plays an important role in education and capacity building
toward PCB elimination, motivating countries, particularly
those with the ability to implement the Convention, to
inventory and dispose of PCBs. Nonetheless, the inventory
quality is generally poor in many countries, compounding the
challenge due to the lack of resources and competing national
pressures.
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The USA is absent from the Stockholm Convention and
lacks effective federal policies to remove and safely dispose of
PCBs despite being the largest producer, user, and likely holder
of the largest stock of PCBs. This is a clear challenge to the
global goal of achieving ESM of PCBs because, by their
properties of persistence and long-range transport, PCBs are a
global threat.

The global distribution of PCB use and stocks is not
uniform. The USA, Canada, Soviet Union, Japan, and Western
European countries dominated the use of PCBs (Figure 2A).
In contrast, today that legacy is shifting globally due to
transboundary transport of PCB-containing equipment and
wastes. While such movement of hazardous substances is
under the purview of the Basel and Rotterdam Conventions,
compliance remains a challenge. This global shift is particularly
problematic considering the lack of PCB management
capacities in lower income/lower development countries.
Global inequality is a major challenge in the implementation
of the Stockholm Convention objective of achieving ESM of
PCBs and POPs in general.

The Stockholm Convention set a deadline to phase out
PCBs some 40 years after cessation of production and more
than 50 years after many highly developed countries banned
their manufacturing, import, and new use. Yet, this deadline
appears unachievable due to the resources (financial and
technical) and the political will required to address the
problem. As the effort required to eliminate PCBs has been
seriously underestimated,'”” we question the feasibility of
removing other newer POPs that have entered widespread use.
In the context of POPs, it could be argued that PCBs are one
of the simpler problems: most use was in large, closed items,
global trade in PCB-containing materials was limited, and most
PCBs were held by large industries which were compelled to
inventory and report them. This is a sharp contrast to two
classes of POPs which have received recent attention—
chlorinated paraffins and per- and polyfluoroalkyl substances,
such as PFOS and PFOA. The major use of these chemicals is
fundamentally different from PCBs; they are primarily used in
open sources and held by millions of individuals, which stymies
efforts to inventory and manage removal, with major
consequences for the environmental and human health of
future generations.”® Chlorinated paraffins are a clear case of
regrettable substitution as the short-chained chlorinated
paraffins replaced PCBs in many open applications™ and,
since 2018, are also restricted under the Stockholm
Convention. This highlights the critical need and urgency to
curtail production and use of chemicals with POP character-
istics as complex management challenges will not soon be
solved, and the consequences are likely to fall disproportion-
ately on lower-income/lower-development countries.
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ARTICLE INFO ABSTRACT

Article history: Concentrations of more than 20 brominated flame retardants (FRs), including polybrominated diphenyl ethers
Received 8 January 2016 ) (PBDEs) and emerging FRs, were measured in air, dust and window wipes from 63 homes in Canada, the
Received in revised form 15 April 2016 Czech Republic and the United States in the spring and summer of 2013. Among the PBDEs, the highest concen-
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trations were generally BDE-209 in all three matrices, followed by Penta-BDEs. Among alternative FRs, EHTBB
and BEHTBP were detected at the highest concentrations. DBDPE was also a major alternative FR detected in
dust and air. Bromobenzenes were detected at lower levels than PBDEs and other alternative FRs; among the

Available online 29 May 2016

gﬁgﬁﬂiéd flame retardants bromobenzenes, HBB and PBEB were the most abundant compounds. In general, FR levels were highest in the
Indoor US and lowest in the Czech Republic — a geographic trend that reflects the flame retardants' market. No statisti-
Air cally significant differences were detected between bedroom and living room FR concentrations in the same
Dust house (n = 10), suggesting that sources of FRs are widespread indoors and mixing between rooms. The concen-
Window film trations of FRs in air, dust, and window film were significantly correlated, especially for PBDEs. We found a sig-

nificant relationship between the concentrations in dust and window film and in the gas phase for FRs with
log Koa values <14, suggesting that equilibrium was reached for these but not compounds with log Koa values
>14. This hypothesis was confirmed by a large discrepancy between values predicted using a partitioning
model and the measured values for FRs with log Koa values >14.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Because the indoor environment is an important human exposure
route for semi-volatile organic compounds (SVOCs), such as brominat-
ed flame retardants (BFRs), knowledge of their levels and partitioning
between different indoor matrices is essential for evaluating their im-
pact on human health. Most studies on BFRs in the indoor environment
have focused on their presence in dust because of its putative contribu-
tion to exposure [e.g., Harrad et al. (2008b); Wilford et al. (2004)]. Al-
though, some studies have documented air concentrations indoors
(Abdallah et al., 2008; Dodson et al., 2015), significantly fewer studies
have dealt with accumulation of BFRs on surfaces such as window
films (Bennett et al., 2015; Butt et al., 2004; Cetin and Odabasi, 2011).
Of these studies, only Bennett et al. (2015) compared indoor film con-
centrations with those of other indoor matrices, i.e. air and dust.

Indoor air can be sampled using passive or active techniques, and
each has its advantages and disadvantages. Passive samplers are easy

* Corresponding author.

http://dx.doi.org/10.1016/j.envint.2016.04.029
0160-4120/© 2016 Elsevier Ltd. All rights reserved.

to deploy and are unobtrusive, which is important in an indoor setting.
These samplers do not require electricity, but they need to be deployed
for several weeks, providing an integrated measurement over this time
period. In comparison, active samplers are bulky and noisy, which is
particularly problematic indoors. They require trained personnel to be
deployed, but they can be left at the site for shorter periods. The most
common passive air sampling design uses a polyurethane foam (PUF)
disk enclosed in a stainless steel bowl (Shoeib and Harner, 2002).
With knowledge of sampling rates, one can calculate time-integrated
air concentrations for compounds mainly present in the gas phase
(Bohlin et al., 2014a, 2014b; Saini et al., 2015). Recent studies have
shown that these samplers can also provide reliable results for higher
molecular weight compounds that are found mainly in the particulate
phase (Bohlin et al., 2014a; Harner et al., 2013; Harrad and Abdallah,
2008a; Peverly et al., 2015).

Indoor dust is a complicated, heterogeneous matrix for which differ-
ent sampling approaches have been used. The most common technique
is to collect floor dust, although in some circumstances undisturbed set-
tled dust on other surfaces can be used (Bjorklund et al., 2012; de Wit
et al., 2012; Lioy et al.,, 2002). Comparisons between different studies
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can be confounded by differences in sampling methods, within room
spatial variability, and by the presence in the room of specific products
(e.g. electronics) (Harrad et al., 2009; Muenhor and Harrad, 2012). Re-
cently, Li et al. (2015) found a strong positive correlation between the
power consumption of electronics and PBDE levels in air and dust in a
large room, which they attributed to heat generated from in-use elec-
tronics promoting the release of these compounds. The least common
medium studied in the indoor setting is the film formed on hard
surfaces by condensation and deposition of gas-phase chemicals and
particles respectively (Diamond et al., 2000; Gingrich et al., 2001). Win-
dows are convenient to use for sampling the film because the glass is
inert, because of the lack of contamination that could arise from other
surfaces, and because the film can be removed quantitatively from this
surface. The most common approach to windows film sampling em-
ploys pre-cleaned wipes (Butt et al., 2004).

With the control and subsequent decline and cessation of produc-
tion of polybrominated diphenyl ethers (PBDEs) in the last decade in
many countries, other brominated flame retardants (BFRs) have
risen in importance. Even though some of these alternative flame re-
tardants have been produced for a long time, most of them have only
came to the attention of the public and the global scientific
community in the past few years. While levels of PBDEs in the envi-
ronment are generally stable or decreasing (Crimmins et al., 2012; Ma
et al., 2013), concentrations of “new” brominated flame retardants, no-
tably 2-ethylhexyl tetrabromobenzoate (EHTBB) and bis(2-
ethylhexyl)tetrabromophthalate (BEHTBP), are increasing as more
products containing these compounds are introduced to the market to
replace products containing PBDEs (Dodson et al., 2012; Ma et al,,
2012; Stapleton et al.,, 2011). In spite of this change in the flame retar-
dant market, data regarding the presence of these replacements of
alternative compounds in the environment are limited.

In this paper, we report the concentrations of newer and legacy
flame retardants in the indoor environments in three different countries
(United States, Canada, and the Czech Republic). We collected air, dust,
and windows films in 63 private homes, and we measured about 20
brominated flame retardants and Dechlorane Plus, a chlorinated flame
retardant. In this paper, we compare concentrations in these three
countries, and we put them in the context of their usage in North
America and Europe. We also look at differences between rooms in
the same home to elucidate possible sources. Finally, we evaluate how
these compounds partition between phases (air, dust, and window
film) and evaluate which sampling media provide the most comprehen-
sive characterization of indoor levels.

2. Materials and methods
2.1. Study population

Samples were collected in three different locations: Bloomington,
Indiana, United States, Toronto, Canada, and Brno, Czech Republic in
May-August 2013. Air, dust, and window film samples were collected
from a total of 63 houses and apartments: 20 homes each from the
Czech Republic and the U.S. and 23 from Canada. At least one room
was sampled in each home (i.e. the main bedroom), and a second
room was sampled in 10 houses per country (i.e. the living room). Par-
ticipation in the campaign was voluntary and did not include any
compensation.

On day 1, passive samplers were deployed, and selected windows
were cleaned with Kimwipes moistened with 2-propanol until no dirt
was visible on the Kimwipes. Participants were asked not to vacuum
the room where the sampler was located until completion of the
campaign, if at all possible. Participants were interviewed by a field
technician to gather information about the house and the household
(e.g. electronic equipment and furniture in the sampled rooms, number
of occupants, and cleaning and ventilation habits).

2.2. Sample collection

Before sampling, all matrices (PUF disks, nylon vacuum socks, and
Kimwipes) were pre-cleaned by Soxhlet extraction (8 h in acetone,
then 8 h in toluene), dried, wrapped in aluminum foil, and transported
to the site. PUF disks for passive air sampling were exposed to indoor air
for 28 days using a single (U.S. and Canada) or double-bowl shaped
housing (Czech Republic) (see Fig. S1). Sampling rates for each sampler
configuration were calculated in a separate experiment by simulta-
neously deploying single bowl and double bowl samplers (see
Supporting Information for details and Fig. S2). For this study, we used
a sampling rate of 1.6 m°/day for the double bowl sampler and
2.9 m>/day for the single bowl sampler. These values are consistent
with previously reported sampling rates indoors (Zhang et al., 2011).
Window film samples were collected after 28 days using pre-cleaned
Kimwipes moistened with 2-propanol. Windows were wiped with a
succession of Kimwipes until no dirt was visible on the Kimwipes, and
all Kimwipes from one window were composited. The sampled area av-
eraged at 0.32 m? for Canada, 0.93 m? for the U.S., and 1.8 m? for the
Czech Republic. Floor dust samples from each room were taken using
pre-cleaned polyester socks inserted on a vacuum cleaner hose attach-
ment, by vacuuming the largest possible area and recording it. All col-
lected samples were wrapped in clean aluminum foil, sealed, labeled,
and subsequently stored at — 20 °C until analysis. Pre-cleaned PUF,
Kimwipes, and polyester socks, which had been exposed by unsealing
the aluminum foil wrap during sample retrievals, were treated as field
blanks.

2.3. Target compounds

In this paper, we have focused on the following compounds:
polybrominated diphenyl ethers (congeners 28, 47, 66, 85, 99,
100, 153, 154, 183, and 209), hexabromobenzene (HBB), p-
tetrabromoxylene (p-TBX), pentabromobenzene (PBBz), 2-ethylhexyl-
2,3,4,5-tetrabromobenzoate (EHTBB), bis(2-ethylhexyl)tetrabromo-
phthalate (BEHTBP), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE),
decabromodiphenylethane (DBDPE), and Dechlorane Plus (syn and
anti). All the analytical standards [except BDE-118, which was purchased
from AccuStandard (AccuStandard, New Haven, CT)], were purchased
from Wellington Laboratories, Guelph, Canada.

2.4. Sample analysis

The U.S. samples were analyzed in Bloomington, Indiana, U.S.
(Indiana University, IU), and the Canadian and Czech samples were
analyzed in Brno, Czech Republic (RECETOX). Details of the analytical
protocols are given in the SI and are summarized here. Before
extraction, all samples were spiked with known amounts of recovery
standards. Socks with dust were weighed, the dust was sieved to
<500 um, approximately 100 mg were weighed, and the excess dust
was stored in an aluminum foil packet for future use. The sock was
rinsed with solvent (30 mL hexane in acetone, 1:1), and the solvent
was combined with weighed dust. Dust was sonicated in 30 mL of ace-
tone in hexane 1:1 (v:v); left to settle for 30 min, and the supernatant
was decanted. The procedure was repeated 2 additional times with
10 mL of solvent, and the extracts were combined. At IU, the extract
was rotary evaporated to 2 mL and then fractionated on a silica column
(3.5% water deactivated) using 25 mL of hexane, 25 mL hexane in di-
chloromethane 1:1 (v:v), and 25 mL of dichloromethane in acetone
3:7 (v:v) as eluting solvents. At RECETOX, the volume of the combined
extracts were reduced under a N, stream and separated by weight to
two aliquots. The first aliquot was 70% of the extract, and it was treated
with sulfuric acid-modified silica. The remaining 30% of the extract was
cleaned using a standard non-modified silica column. PUF and
Kimwipes samples were Soxhlet extracted with 400 mL of acetone in
hexane 1:1 (v:v) for 24 h at IU (Peverly et al., 2015) and with 250 mL



152

of dichloromethane using automated warm Soxhlet extraction (Biichi
B-811, Switzerland) at RECETOX. Extracts were fractionated on silica
columns as per the dust procedure and eluted with 25 mL of hexane,
and 25 mL hexane: dichloromethane 1:1 (v:v) at [U and with 20 mL of
dichloromethane at RECETOX. Extracts were analyzed using GC/MS at
IU and GC/HRMS at RECETOX, using previously published methods
(Lohmann et al., 2013; Ma et al., 2013). More analytical details are re-
ported in the Supporting Information.

24.1. QA/QC

Several measures were taken to ensure data comparability between
the different laboratories and the accuracy and reliability of the
measurements (see Fig. S3 and Table S1 in the Supporting Information
and the related detailed discussion). For the non-PBDE halogenated
flame retardants, both the U.S. and Czech laboratories participated
in an interlaboratory comparison study [called INTERFLAB Phase I
(Melymuk et al. (2015)]. PBDE data from the Czech Republic and
Canadian homes were obtained using an isotope dilution method, and
the results were recovery corrected. Results were not recovery
corrected at IU. Average surrogate recoveries were mostly within the
50-150% range. Solvent blanks were used to evaluate contamination
from the laboratory procedures. Blank levels were low, and no correc-
tion was necessary. Three field blanks per matrix per country were col-
lected and analyzed. The concentrations of the target compounds in
each sample were then compared to the average concentrations in the
field blanks (on a country and matrix specific basis — see Table S2 in
the Supporting Information for more details) and treated as follows: If
the blank level was <10% of the measured level, there was no correction.
If the blank level was 10-35% of the measured level, the blank level was
subtracted from the measured level. If the blank level was >35% of the
measured level, the value was reported as “non-detect”

2.5. Data analysis
Basic and descriptive statistics were calculated using Minitab, and
Microsoft Excel software. Plots were generated using SigmaPlot 13

(Systat Software Inc.).
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3. Results and discussion

A summary of the results for air, dust, and window films at the three
locations is reported in Tables 1-3, respectively. Boxplots for selected
compounds are shown in Figs. 1-3.

3.1. PBDEs

BDE-209 was generally the most abundant PBDE congener,
followed by the sum of the congeners representing the Penta-BDE
commercial mixture (the sum of congeners 28, 47, 66, 85, 99, 100,
153, and 154) — see Fig. 1. The only exceptions to this trend were
window film samples from the Czech Republic (CZ), where the levels
of BDE-209 were lower than those of Penta-BDEs.

The flame retardant concentrations in the U.S. samples were signifi-
cantly higher than those measured in samples from the Czech Republic,
with Canada (CAN) typically being in between (see Fig. 1). We observed
the geographic trend US > CAN > CZ for BDE-209 in dust and window
film and for total PBDEs in dust and air (p < 0.05). However, the trend
was US =~ CAN > CZ for Penta-BDE in air and dust and for total PBDEs
in window film. These geographic trends can be linked to flame retar-
dant use patterns in different regions of the world. North America was
the largest global user of both Penta-BDE and Deca-BDE, whereas
Europe's usage was far lower (Abbasi et al., 2015). The fact that DecaBDE
has been produced in the largest volumes of any commercial PBDEs
accounts for the high relative contribution of BDE-209 in all the samples
(Earnshaw et al., 2015).

BDE-209 was the most abundant PBDE congener in dust and win-
dow film, and BDE-47 and Penta-BDE congeners were the most abun-
dant in air. This distribution is consistent with differences in their
vapor pressures and log Koa; the vapor pressure of BDE-209 is
6.2 x 10~ "% Pa at 25 ° C, but that of BDE-47 is 3.2 x 10~ Pa at 25 °C
and their log Koa values are 10.686 and 18.423, respectively (Episuite
(2012).

An overview of available literature data for indoor studies is given in
the Supporting Information (see Table S3). In general, for all matrices,
the flame retardant concentrations for the U.S. and Canadian samples

Summary results for air samples (pg/m?) including mean with standard error, median, minimum, maximum, and number of detects. The ANOVA results (calculated on log transformed
data) are given as a-c letters in each line; concentrations for compounds that share a letter are not significantly different from one another at p < 0.05.

Air (pg/m?)
us CAN cz
Mean 4+ SE  Median Range N Mean 4+ SE ~ Median Range N Mean 4+ SE Median  Range N

BDE-28 85+5.1 2.2 ND-145 28 b 18+ 54 7.6 1.0-166 34 a 1.2+03 0.58 0.10-9.2 29 ¢
BDE-47 128 4 32 52 4.5-818 30 a 99 + 27 39 54-759 34 a 3.0+ 0.7 1.6 0.56-16 29 b
BDE-100 19+ 10 4.2 ND-272 29 a 4.7 £1.0 1.8 0.38-22 34 b 0.19 + 0.04 0.11 0.05-1.0 29 ¢
BDE-99 95 £ 51 15 ND-1291 26 a 15+33 53 1.3-73 34 b 0.46 + 0.07 0.29 0.16-1.4 29 ¢
BDE-154 7.6 +4.7 0.62 ND-122 27 a 0.80 + 0.22 0.36 ND-4.4 22 b 0.045 4+ 0.003  0.045 ND-0.056 9 ¢
BDE-153 11+6 5.0 ND-71 12 a 0.60 + 0.17 0.26 0.06-5.7 34 b  0.0724+0.008 0.069 ND-0.10 6 c
BDE-183 28 £0.7 25 ND-5 4 a 1.3 +£032 13 ND-1.6 2 b 0.12 £ 0.01 0.12 ND-0.23 28 ¢
BDE-209 836 + 475 257 ND-5461 11 a 83 £+ 31 49 ND-217 6 ab 1142 9.4 ND-15 3 b
Penta-BDE 254 4+ 85 79 49-2291 30 a 140 £ 36 59 83-1024 34 ab 504+ 1.1 29 0.94-28 29 b
TotBDE 561 + 202 148 49-5756 30 a 155 4 40 60 83-1149 34 b 63+1.2 3.0 1.1-28 29 b
pTBX 1.8+03 1.9 ND-2.4 6 a 0.66 + 0.19 0.38 ND-3.4 19 0.31 + 0.03 0.29 ND-0.71 26 b
PBBZ 38+ 1.1 2.5 ND-12 1 b 88+ 2.5 4.8 1.3-74 34 a 49408 34 0.76-17 29 ab
PBEB 9.0 + 44 19 ND-92 21 a 4.0 £ 030 3.9 0.95-7.4 34 a 0.66 + 0.1 0.49 ND-1.4 8 b
HBB 9.6 £2.7 4.0 ND-58 26 a 99 +22 5.8 0.85-60 34 a 724+ 1.7 4.6 ND-31 19 a
Tot bromobenzenes  17.6 4 4.1 9.1 ND-98 28 b 23 £35 16 5.65-91 34 a 10+ 19 7.6 0.8-41 29 b
EHTBB 23+ 6 9.2 1.3-142 30 ab 32410 12 3.1-291 34 a 6.6 + 0.7 5.5 ND-15 28 b
BEHTBP 16+ 7 6.0 ND-109 17 a 6.8 +£2.2 3.1 ND-43 22 ab 3.0+03 3.2 ND-5.4 15 b
EHTBB + BEHTBP 32+9 14 1.3-212 30 ab 37+ 11 14 3.1-293 34 a 824 0.8 7.2 ND-17 28 b
BTBPE 0.18 £ 0.03  0.083 ND-0.74 27 ¢ 1.3+ 039 1.0 ND-2.4 4 a 0.49 £+ 0.12 0.38 ND-1.4 9 b
syn-DP 0.70 + 0.26 0.37 ND-4.0 14 b 28 +4.9 23 ND-76 22 a

anti-DP 82 +39 4.1 ND-23 5 b 43 4+ 13 25 ND-243 18 ab 65+ 65 ND-65 1 a
DPsum 34+ 18 0.37 ND-27 15 b 61+ 15 38 ND-316 23 a 654 65 ND-65 1 a
DBDPE 42 +28 42 ND-71 2 a 13 +£26 9.2 ND-74 29 b

Janti 0.87 £+ 0.01 0.86 0.85-0.91 4 a 0504003 0.46 03-077 17 b

ferTB 0.64 £ 0.05 0.63 0.16-095 17 b  0.80 +0.04 0.83 03-099 22 b 0.69 £ 0.05 0.72 0.27-0.89 15 ab
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Summary results for dust (ng/g) including mean with standard error, median, minimum, maximum, and number of detects. The ANOVA results (calculated on log transformed data) are
given as a-c letters in each line; concentrations for compounds that share a letter are not significantly different from one another at p < 0.05.

DUST (ng/g)
us CAN cz
Mean + SE Median Range N Mean + SE Median Range N Mean + SE Median Range N

BDE-28 12+£22 6.9 0.38-50 30 a 9.0 + 3.0 3.9 0.21-93 35 b 0.3440.08 0.23 ND-12 18 <
BDE-47 365 + 60 271 20-1260 30 a 4804127 230 19-3580 35 a 63424 38 ND-65 26 b
BDE-100 86 + 12 65 3.2-270 30 a 115432 42 3.9-901 35 a 134059 0.53 ND-17 28 b
BDE-99 634 + 142 336 20-2800 30 a 5344139 221 23-3830 35 a 70431 2.5 ND-84 28 b
BDE-154 35+54 30 ND-128 28 a 46 + 12 18 1.8-344 35 a 07540.29 0.33 ND-60 23 b
BDE-153 48 + 7.6 32 1.7-178 30 a 614+ 16 25 2.6-479 35 a 134041 0.77 ND-89 26 b
BDE-183 12+15 11 ND-37 29 a 31+ 84 13 2.3-255 35 a 344068 1.9 ND-15 24 b
BDE-209 2780 + 365 2220 75-7450 30 a 1210 4 206 713 223-4860 35 b 223+39 139 16-788 30 c
Penta-BDE 1210 + 220 735 47-4410 30 a 1310+ 338 514 53-8360 35 a 16 £ 6.5 8.0 0.05-193 30 b
TotBDE 4000 4+ 446 3650 122-9730 30 a 25504397 1770 284-9610 35 b 241440 163 18-797 30 ¢
pTBX 0.32 £0.11 0.21 ND-1.3 11 a 039+0.12 0.50 ND-0.53 3 a

PBBZ 2.6 +£0.68 1.6 ND-15 22 a 33+£092 32 ND-5.6 4 a 044+0.10 0.29 ND-28 28 b
PBEB 1.4 + 040 0.60 ND-8.4 26 a 124+ 0.12 1.2 ND-1.7 8 a

HBB 13+24 7.2 0.92-46 30 a 64413 6.1 ND-11 6 a 214045 14 ND-64 13 b
Tot bromobenzenes 16 + 2.3 13 1.2-48 30 a 39+1.0 1.9 ND-13 16 b 144037 0.7 ND-9.2 28 ¢
EHTBB 918 £ 520 240 ND-15400 29 b 2410+ 613 966 121-15300 35 a 17 +£54 7.8 ND-150 28 <
BEHTBP 2540 4 900 624 112-22,800 30 a 26504+ 1170 431 69-34,500 35 a 60 + 13 42 ND-373 29 b
EHTBB + BEHTBP 3423 + 1065 797 155-23,648 30 a 5058 + 1427 1570 194-36,047 35 a 77 + 14 55 ND-395 29 b
BTBPE 22477 85 ND-204 29 a 27 £ 6.8 12 ND-157 31 a 58«11 39 ND-29 28 b
syn-P 5.0 + 0.80 33 ND-16 29 b 8.8 +3.1 4.6 ND-99 31 b 24410 15 ND-62 5 a
anti-DP 45 + 15 14 ND-311 28 a 35+ 18 15 ND-634 34 a 45 + 15 20 ND-215 14 a
DPsum 48 + 15 18 ND-322 29 a 43 + 21 22 ND-732 34 a 534+ 19 20 ND-277 14 a
DBDPE 367 +£ 119 148 ND-3140 29 a 95 + 60 15 ND-2060 3 b 2047 4.7 ND-114 23 ¢
fanti 0.81 £0.02 0.8161 0.57-0.97 28 a 0.714+0.03 0.71 0.35-0.92 31 b 0.81+0.01 0.81 0.78-086 5 ab
fenTee 030+ 0036 028 0.0075-0.81 29 b 0.6 4 0.041 0.71 0.044-0.91 35 a 02440043 0.14 0.054-068 28 b

are within the same range of values previously reported, but the con-
centrations for the Czech Republic are lower than those found in the lit-
erature for other European 